
TAXONOMY OF CLASS’ OPERATIONS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

1 Introduction

Depending on their nature, operations have specific semantics which can also produce information of interest for

provenance capture. For instance, the key factors involved in the execution of an operation such as getName (accessing

an object’s attribute) are different from the ones related to setName (modifying an object’s attribute), and

consequently, the provenance information captured from the execution of both operations must be different. Taking

this into account, we are interested in identifying a taxonomy of operations which covers the vast varied range of

operation’s types of interest for provenance capture. Based on this taxonomy, we can define our CDs to PROV

template patterns so that the generated templates can provide concrete provenance information depending on the

operation’s semantics.

2 A taxonomy of operations

To define our t axonomy, we undertook a l iterature search l ooking for d ifferent categorizations of operations based

on their behaviours. We distinguished the approaches that present a more general classification of operations such

as [3], from those that provide a more fine g rained t axonomy o f o perations s uch a s [1] o r, m ore r emarkably, the

work presented by Dragan et al. in [2], which is one of the most complete. Dragan et al.’s taxonomy is based

both on how an operation accesses data (i.e., an operation changes the object’s status or leaves it unchanged), and

on its behavioural characteristics (i.e., creational, structural. . .). Such a taxonomy is expressed as a classification of

operations’ Stereotypes. These UML Stereotypes are extension mechanisms that allow us to complement each CD’s

operation with specific semantic information regarding its category within the taxonomy, thus linking the operation

with its corresponding semantics. The notation for a Stereotype is a string with the stereotype name between a pair
of guillemets (e.g., «add»).

This taxonomy define five categories: (1) Creational refers to operations responsible for creating or destroying objects

of the class. (2) Structural Accessor refers to operations that return information regarding the attributes of the object

to which it belongs, without changing the state of the object. (3) Structural Mutator corresponds to operations that

change the state of the object to which it belongs. (4) Collaborational which helps define the communication between

objects and how objects are controlled in the system. Finally, (5) Degenerate corresponds to operations which give us

little information about.

Our proposal (see Table 1), which is inspired from the Dragan et al.’s one [2], includes additional stereotypes (marked

with an asterisk) not initially considered in the original taxonomy: the search, add and remove stereotypes, which

cover operations for the management of collection attributes (such as search, addition or removal, respectively); the

process stereotype, for operations returning information based on the whole object’s internal structure; and modify,

for operations that modify a specific attribute without setting an input value directly. We have not considered the

categories collaborational and degenerate since they represent behaviours already modelled by SqDs (such as the

communication between objects, given by collaborational), or reflect aspects that cannot be tackled without checking

the source code (e.g., degenerate category). Below, we explain the behaviour represented by each stereotype.

2

Table 1: Extension of the taxonomy given in [2] showing the categories of UML Class’ operations considered in our

proposal. Stereotypes with an asterisk denote those included by our proposal.

Category
Stereotype

name
Description

Creational
create The operation creates an object.

destroy The operation destroys an object.

Structural

Accessor

get The operation returns values of concrete attributes of an object.

search* The operation returns elements belonging to a concrete collection attribute of

an object.

process* The operation returns values that are computed based the object’s status as a

whole.

predicate The operation returns boolean values that are computed based on concrete

attributes of an object.

property The operation returns values (of any type) that are computed based on con-

crete attributes of an object.

void-accessor The operation, by means of a parameter, returns values (of any type) that are

computed based on concrete attributes of an object.

Structural

Mutator

command The operation changes the status of an object as a whole (the modified at-

tributes are unknown or irrelevant). It does not return information.

non-void-command The operation changes the status of an object as a whole (the modified at-

tributes are unknown or irrelevant). It does return information.

set The operation directly sets the information passed to the operation as values

of concrete attributes of an object.

modify* The operation modifies concrete attributes of an object.

remove* The operation removes an element from a concrete collection attribute of an

object.

add* The operation adds an element on a concrete collection attribute of an object.

3

References

[1] P. Clarke, B. Malloy, and P. Gibson. Using a taxonomy tool to identify changes in OO software. In Proceedings

of the 7th European Conference on Software Maintenance and Reengineering, (CSMR’03), pages 213–222, 2003.

[2] N. Dragan, M. L. Collard, and J. I. Maletic. Automatic identification of class stereotypes. In Proceedings of the

26th IEEE International Conference on Software Maintenance, pages 1–10, 2010.

[3] OMG. Unified Modeling Language (UML). Version 2.5, 2015. Document formal/15-03-01, March, 2015.

4

	Introduction
	A taxonomy of operations

