
CASE STUDY: UNIVERSITY EXAMPLE

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

The results presented in this appendix are part of the evaluation we have made to show the feasibility of our proposal

UML2PROV presented in the paper [1]. In that paper, we show the evaluation we have made of our proposal

by applying it both to a legacy application named GelJ [2] built without UML (retroactive scenario) and to an

academic application built from a UML design (proactive scenario). While in [2] we mainly focus on the GelJ case

study because it is more complex, here we describe in detail the application of UML2PROV to the proactive scenario,

the University example, using the same evaluation aspects we have taken into account in the paper [1]. We would like

to note that, in contrast to the GelJ case study, in the academic University example we play the role of software

designers, developers, provenance consumers and potential users.

The University case study correspond to an example, slightly modified from [3], related to the enrolment and atten-

dance of students to seminars that are held during a University course. This application mainly allows users to perform

three actions in the context of a university. The first allows administrative staff to check if a student can apply for

a given seminar. The second offers the possibility of enrolling a student in a seminar. Finally, the third is related

to the overall process which encompasses the evaluation of students’ performance in such seminars through exams,

con-sidering from the time an exam is prepared until the student is informed of her/his mark. It is worth noting

that the University application’s database only contains information about specific characteristics of the elements

conforming the system (e.g., students, seminars, exams, and so on). It does not keep information about the requests

for checking if it is possible to apply for a seminar, or for example, the specific process of preparing and taking

an exam, and informing about the mark.

In order to give an unbiased evaluation of our approach, based on a representative use of the University system,

we have defined an example execution considering several scenarios (see Algorithm 1). Concretely, this execution is

divided in two phases: in the first phase (lines from 2 to 9), 25 students ask for enrolling into a seminar (line 4), after the

affirmative response, they are enrolled into the seminar (line 6), and finally, the student’ performance evaluation begins

by proceeding with an exam (line 7). In the second phase (lines 10-13), another 25 students (already enrolled) proceed

with an exam (line 12). Consequently, the defined benchmark involves the execution of the three cited functionalities

of the application. The performance of this example execution incurs in the execution of about 1700 operations in the

tool’s source code.

1 seminar← findSeminar(idSeminar);

2 for i← 0 to 24 do

3 student← findStudent(i);

4 allowEnrol← askStaffForEnrolling (student, seminar);

5 if allowEnrol then

6 enrolStudent (student, seminar);

7 proceedWithExam (student, seminar);

8 end

9 end

10 for i← 25 to 49 do

11 student← findStudent(i);

12 proceedWithExam (student, seminar);

13 end
Algorithm 1: Example execution algorithm in pseudocode

The evaluation was run in the same personal computer and under the same conditions as in the GelJ case study.

1 Particularities of the application modes in this case study

In Table 1 we show the tasks comprising each application mode for this case study. This information can be used to

compare the characteristics of each mode.

Table 1: Overview of tasks in UML2PROV Application Modes.

Task App. Mode 1 App. Mode 2 App. Mode 3

T1. Identify the complete CD - - -

T2. Identify provenance requirements - -

T3. Identify classes/operations involved in provenance requirements - -

T4. Discard not identified classes/operations - -

T5. Add stereotypes to selected operations - -

T6. Identify SqDs - -

T7. Design SMDs of selected classes - - -

8 Permorfed automatically | Requires manual effort | /8 Requires semi-manual effort | – Non executed task

Case study - University

Application Mode 1

Regarding task T2, since in this case study there are no final users interested in the generated provenance, it is not

possible to obtain the provenance requirements from them. For this reason, as described previously, we have simulated

that we are the final users that raised the provenance questions that serve as requirements. To conduct an unbiased

2

evaluation, we have not defined the questions from scratch, but we have drawn inspiration from the questions appearing

in the First Provenance Challenge [4], adapting them to obtain questions regarding the performance of exams. The

resulting questions, depicted in Table 2, represent the provenance requirements (called provenance use case questions

in PrIMe).

Table 2: Questions identified from Q1 to Q5 about the University case study, together with University classes involved

in answering those questions.

ID Ques�on Iden�fied Classes

Q1
What is the set of ac�vi�es that has led an

exam as it is?

Exam

Teacher

Student

Q2 How many answers have an exam? Exam

Q3
When is the student informed about the mark

of an exam?
Exam

Q4 Who has signed the exam?
Exam

Student

Q5 What is the date of an exam? Exam

In this case study, all the UML CD, SqD and SMD diagrams are available at the beginning of the evaluation. Thus,

all the performed tasks are tailoring tasks. Neither to reverse engineer the CD (T1) nor to design the SMDs (T7)

are required. Similarly, it is not necessary to reverse engineer SqD. We just have to select the SqDs related to the

provenance requirements (T6).

Inspired by the second phase of PrIMe, from the UML design we have identified those classes and operations (called

actors in PrIMe) involved in answering the identified questions (T3), following the same procedure described for

GelJ. The result was the identification of 3 classes and 11 operations out of 11 classes and 37 operations that compose

University application (i.e., ∼27% of the classes and ∼29% of the operations of the University application were used.

The rest of classes/operations were discarded (T4). These classes are shown in column “Identified Classes” of Table 2.

In addition, to obtain more meaningful provenance, we assigned stereotypes to the UML operations in class diagram

(T5). As for SqDs, we selected those related to the provenance requirements. This task resulted in a set of 25 messages.

Regarding SMDs, we used the UML SMDs for those classes whose states are related to the provenance requirements.

This led to 2 SMDs with 7 states, and 9 transitions.

As in the GelJ case study, the greatest effort goes into identifying the provenance requirements (T2) and selecting the

classes and operations involved (T3 and T4).

Application Modes 2 and 3

In these modes no tasks are performed, so no effort has been made. More specifically, we have taken the original SqDs

and CDs without tailoring them (CDs, in both modes and SqDs, in Mode 2). Concretely, the UML design encompasses

a CD with 11 classes and 37 operations, and a set of SqDs with 25 messages in total.

1.1 Analysis

Next, we analyse those evaluation aspects explicitly related to the University case study.

3

Table 3: Variables evaluated for the considered UML2PROV Application Modes in the University case study.

Application Mode

(UML diagrams)

No.

templates

Total size of

templates

No.

Variables

No. Set of

bindings

Sets of

bindings

size (MB)

Expanded

templates

size (MB)

No. executions

instrumented

operations

%

instrumented

executed

operations

Execution

time (ms)

Time

 overhead

Mode 1 (SqD, SMD, CD) 25 20KB 115 687 1,4 2,3 687 41,79% 656,19 25,92%

Mode 2 (SqD, CD) 63 47KB 269 1.644 2,0 3,3 1.644 100% 802,29 53,96%

Mode 3 (CD) 40 26KB 137 1.644 1,9 2,0 1.644 100% 747,31 43,41%

1.1.1 Aspect 1: Generation of the provenance design

In line with the results obtained for GelJ, the time-cost for generating the templates, a few milliseconds per template,

is considered negligible compared to the time-cost of performing this task manually (this information is not depicted

in Table 3 because we consider it trivial). As for the implications of the followed mode, the results show that the closer

the UML design fits the application provenance requirements, the less templates are generated and consequently, the

smaller their total size and the faster their generation. Table 3 shows that Mode 1 (with a tailored UML design), results

in the lowest number of templates (25). However, Modes 2 and 3 present a higher number of templates (63 and 40,

respectively). These figures confirm that a greater initial effort to more accurately tailor the UML according to a set of

provenance requirements, results in fewer templates.

1.1.2 Aspect 2: Instrumentation of the application

The column “No. variables” of Table 3 depicts the number of instructions included in the BGM for bindings generation.

Mode 1, with least UML elements, leads to the BGM with fewest instructions (115) against Modes 2 and 3 that generate

BGMs with more instructions within (269 and 137, respectively). Given these results, we can see that although Mode 1

has fewer number of instructions, the difference with Mode 3 is relatively small (115 vs 137 instructions). This small

difference is because of three main reasons. First, due to the small difference between the considered operations in

Mode 1 (11 operations, see Table 1), and Mode 3 (37 operations). Second, because Mode 1 generates templates from

SqDs and SMDs, unlikely Mode 3. Third, since Mode 1 considers CDs with stereotypes, which incurs in templates

with more variables.

Nevertheless, these results are in the line of those obtained from GelJ [1]: the effort devoted to more precisely tailor the

UML design according to the provenance requirements results in a simplification of the BGM, which has significant

implications in the performance.

1.1.3 Aspect 4: Storage and Run-time overhead

The overhead attributable to provenance capture is associated with the number of executions of instrumented opera-

tions (see Table 3, where column “No. set of bindings” matches this number). In this case study, Mode 1 generates

the least number of set of bindings (687), and consequently, led to the least run-time overhead (25.92%) and storage

needs (1.4MB). Conversely, Modes 2 and 3 generated more set of bindings (1,644 both of them), and yielded the more

time overhead (53.96% and 43.41%, respectively) and storage needs (2MB and 1.9MB). Mode 2 will always require

more storage since it takes into account the whole Class diagram (unlike Mode 1) and additionally, it does not discard

the Sequence diagrams (in contrast to Mode 3).

4

Table 4: For each mode, it is indicated if questions Q1-Q5 of Table 2 can be answered completely (C), sufficiently (S),

partially (P) or cannot be answered (N). If a question can be answered, the number of elements of the provenance

involved in its answer appears in brackets.

Q1 Q2 Q3 Q4 Q5

Mode 1 S(5) S(6) S(3) S(3) S(2)

Mode 2 C(12) S(6) N S(3) S(2)

Mode 3 C(12) S(6) N S(3) S(2)

Finally, the difference between column “Set of bindings size” and “Expanded templates size” in Table 3 confirms how

the use of the PROV-Template approach for generating provenance reduces the storage requirements for the set of

bindings compared to the expanded templates.

1.1.4 Aspect 5: Quality of provenance

In this section we will focus on the quality of the provenance generated from the University example. To analyse this

aspect, we study if the collected provenance answers completely (C), sufficiently (S), partially (P) or it cannot answer

(N) the questions in Table 2.

Completely When the user indicated that the answer was more detailed that what she/he expected.

Sufficiently When the user indicated that the level of detail was enough.

Partially When the answer did not satisfy the user.

No When it was not possible to answer the question.

Table 4 summarizes our conclusions, showing the number of elements (prov:Entity, prov:Activity, and

prov:Agent) involved in such an answer, when it can be responded (i.e., when the response is not classified as N).

Based on these results, we identified three kind of implications the mode used to tailor the UML design may have on

the answers.

No effect. The followed mode had no effect on the ability to answer to questions Q2 and Q5. More specifically, the

answer to questions Q2 and Q5 relies upon the values of attributes belonging to the class Exam. Since the three modes

take into account a CD with all the attributes of class Exam, the provenance obtained from can answer these questions.

More detailed information. The answer to Q1 relies upon the operations identified in classes Exam, Teacher, and

Student. Mode 1, which only identifies a set of operations, answers Q1 with a sufficient number of elements (5).

However, Modes 2 and 3, encompassing the whole operations, answers Q1 with more elements than necessary (12

both of them).

Crucial. The UML diagrams supported by UML2PROV model only certain aspects of an application’s behaviour.

Consequently, the generated provenance will contain information about these aspects. The answer to question Q3

relies upon information provided by SMDs; thus, Mode 1, which is the only one considering SMDs, is the unique

mode capable for answering Q3.

5

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent

References

[1] C. Sáenz-Adán, B. Pérez, F. J. García-Izquierdo, and L. Moreau, “Integrating Provenance Capture and UML

with UML2PROV: Principles and Experience,” submitted for publication in IEEE Transactions on Software

Engineering.

[2] J. Heras, C. Domínguez, E. Mata, V. Pascual, C. Lozano, C. Torres, and M. Zarazaga, “GelJ – a tool for analyzing

DNA fingerprint gel images,” BMC Bioinformatics, vol. 16, Aug 2015.

[3] M. Seidl, M. Scholz, C. Huemer, and G. Kappel, UML@Classroom: An Introduction to Object-Oriented Model-

ing. Springer Publishing Company, Incorporated, 2015.

[4] L. Moreau et al., “Special issue: The first provenance challenge,” Concurr. Comput. : Pract. Exper., vol. 20,

pp. 409–418, Apr. 2008.

6

	Particularities of the application modes in this case study
	Analysis
	Aspect 1: Generation of the provenance design
	Aspect 2: Instrumentation of the application
	Aspect 4: Storage and Run-time overhead
	Aspect 5: Quality of provenance

