
IMPLEMENTATION DETAILS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,

luc.moreau@kcl.ac.uk

This appendix provides a detailed description of the Model Driven Development (MDD) approach we have followed

for implementing UML2PROV, which we succinctly explained in the paper [1]. This approach is presented schemat-

ically in Figure 1, below. MDD focuses on models, rather than on computer programs, so that the code programs

are automatically generated from them by using a refinement process [2]. This process could entail one or various

transformations that describe the way in which a source model is translated into another final target. Depending on the

type of source and target elements of the transformation, we can distinguish between model to model transformations

(M2M), in which both are models, and model to text transformations, which define transformations from a model to a

final text.

Our solution for implementing UML2PROV following an MDD approach comprises both M2M and M2T transfor-

mations. Among the different existing tools to implement M2M and M2T transformations, we have used the Atlas

Transformation Language (ATL) [3] and Xtend [4]. On the one hand, in case of M2M transformations, we have used

out

AspectJ
code

Bindings Generation Module

Java
dependencies

out

(context independent
component)

used

input

wasGeneratedBy

collElements

hadMember

operation

target

source

used

wasDerivedFrom

hadMember

wasDerivedFrom

coll_new

wasGeneratedBy
hadMember

PROV-N

.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

Bindings Generation Module
generation process

PROV template
files

PROV templates generation
process

UML2PROV

Xtend

Xtend

ATLin

(context dependent
component)

Figure 1: Our MDD-based implementation proposal.

ATL [3] for being one of the most widely used M2M transformation languages, in addition to provide an IDE devel-

oped on top of Eclipse. On the other hand, M2T transformations have been implemented by means of Xtend [4] for

several reasons, among which we note that it integrates seamlessly with the Eclipse Java IDE, and that it has a large

user community and a significant number of available examples.

Next, in Section 1, we explain the MDD transformations we have defined to implement our UML to PROV tem-

plates transformation patterns. Later, in Section 2, we first give details regarding our strategy to implement the BGM

(Bindings Generation Module) for an application and, second, we provide our MDD-based proposal to automatically

generate it.

1 Automatization of the UML to PROV Templates transformation patterns

Generally speaking, our proposal for implementing our transformation patterns takes as source the UML diagram

models of the application and automatically generates the PROV template files (Figure 1). Instead of performing a

one-step direct transformation between such source and target elements, we have decided to define an intermediate

step by means of which UML diagram models are first translated into a transitional model (template models) which will

be finally translated into the PROV template files in PROV-N. This strategy allows us to draw a distinction between the

translation from UML diagram models into template models, and the way in which the template models are serialised,

in this case PROV-N. As a result, our proposal follows an MDD-based tool chain that comprises two transformations

(see Figure 2): first, an M2M transformation identified by T1, whose implementation is explained in Subsection 1.1,

and second, an M2T transformation identified by T2, which is explained in Subsection 1.2.

in out
T1 T2

inout

used

input

wasGeneratedBy

collElements

hadMember

operation

target

source

used

wasDerivedFrom

hadMember

wasDerivedFrom

coll_new

wasGeneratedBy
hadMember

PROV-N.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

PROV template
files

.xmi

template
models

conforms to

PROV
metamodel

UML
metamodel

conforms to

UML2PROV

XtendATL

Figure 2: Detailed MDD-based implementation of the PROV templates generation process

1.1 Transformation T1: from UML diagram models to template models

This M2M transformation takes as source the UML diagram models, conforming to the UML metamodel [5], and

generates the corresponding template models, conforming to the PROV metamodel [6]. To that end, our transformation

patterns [7] serve as the basis for the definition of an ATL module made up of a set of ATL rules. Each rule addresses

one transformation pattern describing how the UML elements identified by the pattern are mapped to the specific

PROV elements, and their relations, constituting a template model.

As an example of such ATL rules, Table 1 shows how an excerpt of the ATL rule defined to implement the ClP1 pattern

looks like. Such a pattern deals with operations that construct an object. This table depicts, per each fragment of the

2

Table 1: An excerpt of the ATL rule implementing ClP1. For each fragment in the excerpt (“ATL source code”

column), the PROV elements it generates are provided (“Template model” column) together with a description of the

transformation (“Description” column) as well as the graphical notation of the template model (last column).

ATL source code Template model

rule Operation2Document{

from
 operation: UML!Operation(
 operation.hasStereotype('create'))

[...]

postObjectEn: PROV!Entity (
id <- 'var:postObject',

 ...),

operationAct: PROV!Activity (
id <- 'var:operation',

 ...),

wgb: PROV!Generation (
entity <- postObjectEnID,
activity <- operationActID),

to

do{

if(existIn){
thisModule.newEnt('var:input', doc);

thisModule.genDer('var:postObject',
 'var:input', doc);

thisModule.genU('var:input', '
 var:operation', doc);
}

if(hasAttr){
 thisModule.newEnt('var:attribute',

 doc);

thisModule.genMe('var:attribute',
 'var:postObject',
 doc);
}

<document id= "....">

<entity id="var:postObject"/>

<activity id="var:operation"/>

<wasGeneratedBy>
 <entity ref="var:postObject"/>
 <activity ref="var:operation"/>
</activity>

<entity id="var:input"/>

<used>
 <activity ref="var:operation"/>
 <entity ref="var:input"/>
</used>

<wasDerivedFrom>
 <generatedEntity ref="var:postObject"/>
 <usedEntity ref="var:input"/>
</wasDerivedFrom>

<entity id="var:attribute"/>

<hadMember>
 <collection ref="var:postObject"/>
 <entity ref="var:attribute"/>
</hadMember>

wasGeneratedBy

var:operation

wasDerivedFrom

wasGeneratedBy

var:input

used

var:operation

var:postObject

var:operation

var:postObject

var:postObject

Description

This excerpt is in charge of generating an
<activity> identified by var:operation.

This excerpt is responsible for linking
var:postObject with var:operation
by means of the PROV relation
<wasGeneratedBy>.

In case there are UML Input Parameters, it
creates an <entity> identified by
var:input*, and its relations
<wasDerivedFrom> and <used> with
var:postObject and var:operation,
respectively.

If there are UML Attributes in the class to
which the operation belongs, it generates
an <entity> identified by
var:attribute*, and the PROV relation
<hadMember> between
var:postObject and var:attribute.

It states that the rule is applied to all the
UML operations to which ClP1 refers. That
is, those operations with the stereotype
«create»

It creates an <entity> with identifier
var:postObject.

var:attribute

hadMemberwasDerivedFrom

wasGeneratedBy

var:input

used

var:operation var:postObject

</document>[...]

It creates the PROV <document>.

*Although ClP1 states that each attribute/input parameter is a separate prov:Entity identified as var:attribute/var:input, we have decided to merge all the entities
with the same identifier. Nevertheless, this decision does not have any effect on the bindings, since each var:input and var:attribute will be given several values
(one for each input parameter and attribute, respectively).

Graphical representation of
the template model

rule (see first column), the PROV elements/relations in the template that are generated by such a fragment (see column

“Template model”). We can see how PROV elements such as document, entity and activity, as well as PROV relations

such as used and wasGeneratedBy, appear in the column as <document> , <entity> , <activity> , <used> , and

<wasGeneratedBy> . Additionally, the description of the transformation together with the graphical notation of the

template model being generated are given in the two right-hand columns.

1.2 Transformation T2: from template models to PROV template files

T2 corresponds to an M2T transformation that takes as source the template models resulting from T1, and generates the

PROV template files in PROV-N format. This transformation is implemented in an Xtend class (see Figure 3) which

contains template expressions that associate each PROV element/relation with its associated PROV-N representation.

Among the defined Xtend template expressions (declared by the explicit keyword def), there is a main template (line 2)

which is in charge of translating each PROV <document> appearing in the template models into a PROV template,

defined as a .provn extension text file. This PROV-N document will include not only fixed text (shown in green

in Figure 3), but also the text resulting from instantiating those Xtend templates in charge of translating the PROV

elements/relations included in the <document> (lines from 3 to 15). As a way of example, Figure 3 also depicts the

Xtend template (line 16) which translates each <entity> into the corresponding prov:Entity in PROV-N.

3

http://www.w3.org/ns/prov#Entity

class PROVNGenerator {

 def manageDocument(Document doc, PrintStream o) {
 o.println('

document
prefix prov <http://www.w3.org/ns/prov#>
prefix tmpl <http://openprovenance.org/tmpl#>
prefix var <http://openprovenance.org/var#>
prefix exe <http://example.org/>
prefix u2p <http://uml2prov.org/>

bundle exe:bundle1
')

 for (entity : doc.entity) {o.println(manageEntity(entity))}
 for (agent : doc.agent) {o.println(manageAgent(agent))}
 for (activity : doc.activity) {o.println(manageActivity(activity))}
 for (wsb : doc.wasStartedBy) {o.println(wStartedByTemplate(wsb))}
 for (wgb : doc.wasGeneratedBy) {o.println(wgbTemplate(wgb))}
 for (u : doc.used) {o.println(usedTemplate(u))}
 for (wInfB : doc.wasInformedBy) {o.println(wInfByTemplate(wInfB))}
 for (wInvB : doc.wasInvalidatedBy) {o.println(wibTemplate(wInvB))}
 for (wdf : doc.wasDerivedFrom) {o.println(wdfTemplate(wdf))}
 for (hm : doc.hadMember) {o.println(hmTemplate(hm))} //
 for (so : doc.specializationOf) {o.println(spOTemplate(so))} //
 for (wat : doc.wasAttributedTo) {o.println(watTemplate(wat))}
 for (waw : doc.wasAssociatedWith) {o.println(wawTemplate(waw))}

 o.println('

endBundle
endDocument');

 }

 def manageEntity(Entity entity) {

 '''entity(«entity.id», «entityAttributeTemplate(entity)»)'''
 }

...
}

1:

Fixed
text

Fixed
text

2:

3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

16:

Figure 3: Xtend class including the template defined for each <document> and <entity> in the template models.

2 BGM generation automation

Here, we explain in detail a reference implementation for the automatic generation of the BGM corresponding to a

certain application, starting from its UML design. Below, we will explain our strategy for implementing the BGM for

a concrete application starting from its UML design (Subsection 2.1), and later we move on to describe the process we

have defined to automatically generate a BGM (Subsection 2.2).

2.1 Towards an implementation of the BGM

Aimed at providing an implementation of a BGM, there are several issues a developer may consider to manage the

provenance data for creating bindings. The first one is referred to when and how the bindings are generated and stored.

For example, applications may store the provenance data using usual logs, delaying the construction of bindings

4

until after runtime. Alternatively, applications could directly construct the bindings at runtime. The second aspect

refers to when provenance documents are generated and which storage system is used. For example, the bindings

could be accumulated locally in memory, delaying the generation of the provenance documents (i.e., the expansion of

templates), and thus their storage (e.g., database, files,. . .) until after runtime. Alternatively, the strategy could be to

expand the templates with the accumulated bindings on runtime, storing the provenance documents as the application

is executed.

Taking into account these issues, we have defined a generic event-driven proposal to implement the BGMs. Events are

notable occurrences that happen while the application is running, whereas listeners contain the behaviour for process-

ing the events. Concretely, our proposal for capturing the provenance data is driven by the execution of operations, for

this reason, we have identified four notable types of occurrences that take place during the execution of an operation,

and which correspond to four types of events, respectively. Two of these events are related to the start and end of an

operation, whereas the two remaining event types refer to the collection of values associated with the two types of

variables stated in [9] (group variables and statement-level variable). On the one hand, a group variable is a type of

variable that occurs in a mandatory identifier position. On the other hand, a statement-level variable is a variable that

occurs in an attribute-value pair (either in attribute position or in value position), or that occurs in optional identifier

position. So as to give an insight into them, Figure 4 shows a prov:Activity in PROV-N with variables ocurring in

different positions.

In this context, the event types we have identified are the following:

• (1) operationStart and (2) operationEnd. These types of events refer to the start and end of an operation exe-

cution, respectively. They are of interest when developers want to create and store sets of bindings associated

with a concrete operation execution, instead of storing each binding independently.

• (3) newBinding. This type of event refers to the occurrence of the collection of a provenance value associated

with a group variable. For instance, the collection of a value associated with the variable var:operation in

Figure 4 will trigger an event of type newBinding since var:operation occurs in an identifier position.

• (4) newValueBinding. This type of event refers to the occurrence of the collection of a prove-

nance value associated with a statement-level variable. For instance, the collection of values linked

with var:operationStartTime and var:operationName in Figure 4 fires newValueBinding events due to

var:operationStartTime occurring in an optional position, and var:operationName occurring in a value

position.

Our reference implementation of BGM is made up of four main components written in Java (see Figure 5) which are

divided into two main groups. The first group, which is referred to as context independent components, is made up

activity(var:operation, var:operationStartTime, var:operationEndTime, [prov:type=var:operationName])

mandatory
position optional position optional position value position

Figure 4: PROV activity in PROV-N [8] with different types of variables. Additionally, it is shown a table associating

each variable with its type.

5

http://www.w3.org/ns/prov#Activity

Application

BGMEvent
+executionID:String
+className:String
+executionIdMethod:String
+varName:String
+value:String
+state:String

BGMEventInstrumenter

BGMEventManager

+addListener(listenerBGMListener): void
+removeListener(listenerBGMListener): void
+disseminateEvent(event:String, e:BGMEvent):void

<<interface>>
BGMEventListener

+operationStart(e:BGMEvent):void
+operationEnd(e:BGMEvent):void
+newValueBinding(e:BGMEvent):void
+newBinding(e:BGMEvent):void

-getExecutionID():String
-getClassName(): String
-getExecutionIDMethod(): String
-getVarName(): String
-getValue(): String
-getState(): String

<<aspect>>

*+listListeners

1

Figure 5: UML CD depicting our reference implementation for the BGM.

of those elements that do not depend on the source UML diagram models, and therefore, they are the same in all the

BGMs. This group is made up of the BGMEventListener, BGMEvent, and BGMEventManager (see components in

white background in Figure 5). The second group, called context dependent components, consists of those elements

whose implementation depends on the source UML diagram models. In our reference implementation the only element

included in this group is the BGMEventInstrumenter (depicted in grey background in Figure 5).

• BGMEventListener. It is an interface that defines four operations for managing each type of event (operationStart,

operationEnd, newBinding, and newValueBinding). These operations have an input parameter of type BGMEvent

(see below) that contains the provenance data to be processed. The implementation of these operations constitutes

the mechanism used by a class implementing the listener interface to generate, manage, and store the bindings.

As commented before, the developer just needs to choose the mechanisms that best suits her/his requirements by

developing classes implementing the BGMEventListener interface. Later, in Section 2.1.1, we will give a reference

implementation of this interface. At this point, we remark that with the aim of simplifying the design, we group

all the operations for managing the abovementioned event types in the same interface (BGMEventListener). In

case a developer is not interested in handling a concrete event, she/he can leave empty the implementation of its

corresponding operation.

• BGMEvent. This component is used to carry information about the occurrence of an event. We have decided to use

the same class BGMEvent to contain information about the four event types (operationStart, operationEnd, new-

Binding, newValueBinding) because this information can be stored using the same structure. Concretely, this struc-

ture will contain the provenance data necessary for constructing the bindings. Among them, we remark the attribute

6

public aspect BGMEventInstrumenter {

Object around(): initialization(<object>.new(..)) || call(* <object>.<operation>(..)){

behaviourBeforeExecution();

Object rtn = proceed();

behaviourAfterExecution();

return rtn;
 }
}

Pointcuts

advice
aspect

Custom behaviour executed
before the actual behaviour

Custom behaviour executed
after the actual behaviour

Actual behaviour

Figure 6: Structure overview of a reference implementation of the BGMEventInstrumenter in AspectJ

varName for the name of the variable, and the attribute value for the value associated with such a variable. See

Figure 5. For instance, in case of an operationStart event, a BGMEvent object could have an attribute varName con-

taining the value "var:operationStartTime", and an attribute value with the value "2018-12-20T12:54:20". An-

other example could be a BGMEvent object with information about a newBinding event. It could contain an attribute

varName with the value "var:operation", and the attribute value containing "exe:nameOfOperation-300691".

• BGMEventManager. In some cases, to have only one listener for generating, managing, and storing bindings could

be not enough, and the same happens with the mechanisms for generating and storing provenance. For instance, one

provenance consumer may be interested in replicating the information by storing both the provenance data, and the

bindings generated from them in different storage systems. Aiming at addressing these scenarios, we have included

the BGMEventManager with two responsibilities: to manage a list of subscribed listeners, and to disseminate the

objects of type BGMEvent among them.

• BGMEventInstrumenter. As we stated in the paper [1], to manually adapt the source code of an application would

be a valid option to capture provenance data. However, this option would require to traverse the whole code of the

concrete application identifying the classes that will be the source of the events, and additionally, those places inside

these classes where events will be fired. Then, the manual adaptation of the source code would need to include in

those places instructions for constructing BGMEvent objects with the provenance data, and disseminating them

among the listeners. This task constitutes a tedious, time-consuming and error-prone process. What is worse, the

manual adaptation could incur in such provenance capture code instructions scattered across all the application

classes, making their maintenance a cumbersome task.

In contrast, we propose to use the Aspect Oriented Programming (AOP) [10] paradigm for implementing what we

have named BGMEventInstrumenter. AOP aims at improving the modularity of software systems, by capturing

inherently scattered functionality, often called cross-cutting concerns, (e.g., the capture of provenance), and placing

that functionality apart from the actual application’s source code. Our reference implementation is developed in

AspectJ, an AOP extension created for Java [11], and it consists of an aspect which is made up of an advice with

pointcuts (see Figure 6). On the one hand, the pointcuts identify locations within the application code where a

concern may be included. In our case, we identify operation calls and constructor invocations from which we

want to fire events (i.e., to collect provenance). On the other hand, the advice is the behaviour executed when the

pointcuts are matched. In AspectJ, advices can be executed at three different places: before, around, and after the

pointcuts. Due to the fact that our identified events can occur both before and after operations calls and constructors

7

invocations, we have used an around advice for executing custom behaviours before and after the actual behaviour.

These custom behaviours consist of constructing objects of type BGMEvent and disseminating them to the listeners

(by invoking the disseminateEvent operation from BGMEventManager). In the end, as a pre-compilation step, the

AspectJ weaver automatically integrates the behaviour from the aspects into the locations specified by the pointcuts

at compilation time. In this way, our AOP approach does not require a manual intervention for adapting the source

code, and automatically collects provenance data in a transparent way for software developers, which directly incurs

in fulfilling the requirements R1-R3 stated in the paper [1].

2.1.1 Example of a class implementing the BGMEventListener

Taking into account the structure depicted in Figure 5, we provide the users with a concrete implementation of the

interface BGMEventListener (class that we name ConcreteBGMEventListener). This class implements the four oper-

ations defined in the BGMEventListener so that the bindings are generated and accumulated in memory, and when the

execution of each tracked operation finishes, they are shipped to the MongoDB database. Thus, this implementation

is only in charge of generating and storing bindings, delaying the expansion of templates. In this way, the users can

decide not only which templates to expand, but also when to expand them.

2.2 Automatization of the implementation of the BGM

The BGM for an application is automatically generated by means of an M2T transformation referred to as T3 in

Figure 7. Such a transformation has been implemented by means of an Xtend class that takes as source the application’s

UML diagram models, conforming the UML metamodel [5], and generates the java code of the BGM.

in out
T3

.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

.xmi

UML
metamodel

conforms to

UML2PROV

Xtend

Figure 7: Detailed MDD-based implementation of the BGM for an application.

As we stated previously, the source code of the context independent components (i.e., BGMEvent, BGMEventMan-

ager, and BGMEventListener) is the same for all the BGMs; thus, it does not depend on the UML diagram models

used as input in the transformation. Conversely, the implementation of the context dependent component (i.e., BG-

MEventInstrumenter) depends on the source UML diagram models.

Our strategy for automatically generating the BGM is to implement an Xtend class that (1) directly creates all the

context independent components, and (2) generates the BGMEventInstrumenter based on the source UML design.

Whilst we could have provided users with a separate library including all the context independent components, we

have made the decision of generating them automatically together with the BGMEventInstrumenter in order to reduce

the code dependencies.

8

In particular, the Xtend class generates the BGMEventInstrumenter so that its pointcuts identify the calls to operations

and invocations of constructors. Concretely, these pointcuts correspond to (1) the invocations of the constructors

of classes involved in the UML design, and (2) calls of operations that are involved in the source: SqDs (i.e., the

operations whose calls are modelled by means of UML Messages), SMDs (i.e., the operations whose occurrences are

associated with UML Events), and CDs, (i.e., the operations that are modelled by UML Operations). The remainder

source code of the BGMEventInstrumenter (that is, the advise) is also shared by all the BGMs.

2.3 Fulfilment of BGM requirements

The reference implementation of the BGMs given in this document fulfils the five requirement stated in the paper [1]

(identified from R1 to R5). As we previously stated, requirements from R1 to R3 have been met thanks to the AOP

implementation of the BGMEventInstrumenter explained in Section 2.1. Regarding the requirements R4 and R5, we

note that they have been satisfied because of the suitable ad hoc implementation of the BGMEventInstrumenter for a

concrete application (explained in Section 2.2). On the one hand, the automatically generated pointcuts inside the BG-

MEventInstrumenter ensures that the collected bindings are associated with at least one PROV template (requirement

R4). This is because the pointcuts correspond to operations calls and constructors invocations that are modelled in the

UML design, and therefore they have an associated PROV template. On the other hand, the requirement R5 is fulfilled

since the transformation T3 has been implemented so that it respects the names of the variables appearing in the PROV

templates generated by the chain of transformations T1-T2.

References

[1] C. Sáenz-Adán, B. Pérez, F. J. García-Izquierdo, and L. Moreau, “Integrating Provenance Capture and UML

with UML2PROV: Principles and Experience,” submitted for publication in IEEE Transactions on Software

Engineering.

[2] B. Selic, “The pragmatics of model-driven development,” IEEE software, vol. 20, no. 5, pp. 19–25, 2003.

[3] ATL - a model transformation technology, version 3.8. Available at http://www.eclipse.org/atl/. Last

visited on January 2020.

[4] Xtend, “General-purpose high-level programming language.” Available at https://www.eclipse.org/

xtend/. Last visited on January 2020.

[5] OMG, “Unified Modeling Language (UML). Version 2.5,” 2015. Document formal/15-03-01, March, 2015.

[6] L. Moreau, P. Missier (eds.), K. Belhajjame, R. B’Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil, P. Groth,

G. Klyne, T. Lebo, J. McCusker, S. Miles, J. Myers, S. Sahoo, and C. Tilmes, “PROV-DM: The PROV Data

Model,” W3C Recommendation REC-prov-dm-20130430, World Wide Web Consortium, 2013.

[7] Supplementary material for the paper entitled “Supplementary material of Integrating Provenance Capture and

UML with UML2PROV: Principles and Experience” containing the Description of patterns, submitted for pub-

lication in IEEE Transactions on Software Engineering. Available at https://uml2prov.unirioja.es/. Last

visited on January 2020.

9

http://www.eclipse.org/atl/
https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/
https://uml2prov.unirioja.es/

[8] L. Moreau, P. Missier (eds.), J. Cheney, and S. Soiland-Reyes, “PROV-N: The Provenance Notation,” W3C

Recommendation REC-prov-n-20130430, World Wide Web Consortium, Apr. 2013.

[9] D. Michaelides, T. D. Huynh, and L. Moreau, “PROV-TEMPLATE: A Template System for PROV Documents,”

2014. Available at https://provenance.ecs.soton.ac.uk/prov-template. Last visited on January 2020.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented

programming,” in Proc. of the European Conference on Object-Oriented Programming (ECOOP 1997), (Berlin,

Heidelberg), pp. 220–242, 1997.

[11] The AspectJ Project. Available at www.eclipse.org/aspectj/. Last visited on January 2020.

10

https://provenance.ecs.soton.ac.uk/prov-template
www.eclipse.org/aspectj/

	Automatization of the UML to PROV Templates transformation patterns
	Transformation T1: from UML diagram models to template models
	Transformation T2: from template models to PROV template files

	BGM generation automation
	Towards an implementation of the BGM
	Example of a class implementing the BGMEventListener

	Automatization of the implementation of the BGM
	Fulfilment of BGM requirements

