
SPECIFICATION

OF THE

UML TO PROV PATTERNS

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Francisco J. García-Izquierdo1, Luc Moreau2

1Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,
{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2Dept. of Informatics, King’s College London, London, UK,
luc.moreau@kcl.ac.uk

1 Introduction
This specification defines in detail the patterns for translating UML into PROV. The main objective of this specification is
to provide a tool for implementing systems that include provenance capabilities during their design phase.
This document has been organized into three main parts:

• Section 2 provides an insight into the information required for the accurate understanding of this specification such as the
notational conventions used throughout the document (Section 2.1), or the description of the structure for the pattern’s
explanations (Section 2.2).

• Section 3 shows a table that associates each pattern’s identifier with the page where it is explained.

• Sections from 4 to 6 provide a systematic explanation of each pattern classified by the addressed UML diagram.

2 Before reading
As we see this document as the reference specification for UML2PROV, each pattern has been written in a self-contained way.
A reader who reads all the patterns sequentially from the first to the last will find similar explanations, even repeated ones,
in several patterns. We have preferred to make the reader suffer this small inconvenience, instead of running the risk that an
occasional reader of a particular pattern loses part of the explanations that are discussed elsewhere.
We assume that the reader is familiar with the following UML diagrams: UML Sequence Diagrams (SqDs), UML State
Machine Diagrams (SMDs), and UML Class diagrams (CDs). Readers unfamiliar with these diagrams are encouraged to read
the UML specification [1]. Additionally, due to the fact that transformations referring to CDs make use of concrete UML
stereotypes used to classify UML Class’s operations, we refer to Appendix A for an overview about them.
Likewise, we assume that the reader is knowledgeable about both the PROV data model (PROV-DM) [2], to represent
provenance information, and the PROV template approach [3], for designing provenance. If this is not the case, she/he is
referred to [2] and [3], respectively.

1

2.1 Notational conventions
More than a terminological nuance, the distinction between the state and the status of an object is fundamental to understand
this document. More specifically:

• In SMDs, in accordance to UML terminology [1], the state of an object denotes a situation during which some invariant
conditions holds.

• In CDs, we use the term object’s status with a broad scope, referring to the values of the object’s attributes at some
moment, which particularly could correspond to a concrete state but not necessarily.

The PROV templates throughout this document are represented following the PROV graph conventions given in [4].
We also use qualified names (e.g., prov:value) in accordance to PROV-DM [2]. In compliance with PROV-DM, we note
that a qualified name can be mapped to an Internationalized Resource Identifier (IRI) [5] by concatenating the IRI associated
with the prefix (e.g., prov) and the local part (e.g., value). Every qualified name with a prefix refers to the namespace of the
prefix. The following namespaces and prefixes are used throughout this document.

prefix namespace IRI definition
var http://openprovenance.org/var# The namespace for template variables
prov http://www.w3.org/ns/prov# The PROV namespace
xsd http://www.w3.org/2000/10/XMLSchema# XML Schema namespace
u2p http://uml2prov.unirioja.es/ns/u2p# UML2PROV namespace

Table 1. Prefix and Namespaces used in this specification

2.2 Structure of the patterns
We have structured the explanation of the defined patterns in the same five blocks: Identifier, Context, UML Diagram,
Mapping to PROV, and Discussion. See the explanation of each block below.

2.2.1 Identifier
Unique identifier of the transformation pattern. It is an acronym that refers to the type of UML diagram together with a numeric
identifier. The UML Sequence diagram Patterns are referred to as SeqP<N>, where N is the numeric identifier. Likewise,
StP<N> corresponds to the UML State Machine Patterns, and ClP<N> to the UML Class Diagram Patterns.

2.2.2 Context
The behaviour addressed by the pattern. In order to give a free of context explanation, being as agnostic as possible about
the modeling language used to represent such a behaviour, we will use the natural language including well-known software
engineering terminology (e.g., object, operation. . .), to identify the part of the domain for which the corresponding pattern
proposes a translation.
Each pattern context block will include a detailed description of its key elements. When necessary, we will use nested elements
to describe the different alternatives through which certain key elements participate in the context. We remark that not all the
identified key elements explicitly appear in the context. Some patterns identify specific key elements that are inferred from the
context because they play an important role in the pattern.

2.2.3 UML Diagram
This block will depict the excerpt of the UML diagram with the elements that model the previous key elements. In addition, we
provide a table, whose structure is illustrated below, that explains the representation of each key element, by means of UML
elements. Additionally, we assign a green label containing a numeric identifier to each UML element, which makes it easier its
location in the UML diagram.

Key Element UML Rationale
Name of the element UML element id The fundamental reasons serving to account for the use of the UML

element for modelling the key element.

2/74

http://openprovenance.org/var#
http://www.w3.org/ns/prov#
http://www.w3.org/2000/10/XMLSchema#
http://uml2prov.unirioja.es/ns/u2p#

2.2.4 Mapping to PROV
This block contains the PROV template generated from the previous excerpt of UML Diagram, together with a explanation
about the transformation, that is, the PROV elements, attributes, and PROV relations generated from the UML elements in the
UML Diagram. We assign a numeric identifier to each PROV element that corresponds to the identifier of the UML element
from which it comes from. Additionally, each relation among PROV elements appearing in the PROV template is labeled with
a letter that helps link such a relation with its description. The structure used to specify this block is the following:

PROV elements

UML PROV / id Rationale
UML element id PROV element id /

var:<identifier>

The explanation of the mapping between UML element and PROV ele-
ment.

Attributes

PROV Element Attribute / Value Description
PROV element id name of attribute /

assigned value
The description of the meaning of the attribute and its value.

Note: Throughout this specification, we have included the attributes tmpl:startTime and tmpl:endTime associated with
Activities because we consider such an information very useful from a provenance point of view. Nevertheless, both
attributes are optional and the user is free to include them.

PROV relations

PROV Relation Description

PROV relation id Description of the relation.

Note: In PROV, two relationships of the form (B, prov:used, A) and (C, prov:wasGeneratedBy, B) may be enriched
with (C, prov:wasDerivedFrom, A) to express the dependency of C on A. This structure is a provenance construction
called use-generate-derive triangle [3] which explicitly connects a generated prov:Entity to a used prov:Entity. In the
realm of this work, it may be applied in those templates in which a prov:Entity is used by a prov:Activity, and such
a prov:Activity generated another prov:Entity. However, aiming at avoiding the overburden of the PROV template
explanations with information that can be inferred, we have decided to include the relation prov:wasDerivedFrom only
when the context of the pattern explicitly refers to such a derivation.

2.2.5 Discussion
Issues related to the transformation of UML to PROV. Concretely, we will focus on the explanation and justification of our
transformation decisions together with alternative solutions (if any), and some questions that are likely to come up to the reader.

3/74

https://openprovenance.org/tmpl#startTime
https://openprovenance.org/tmpl#endTime
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom

3 Index of patterns

Modelled by means of UML Sequence Diagrams
Pattern
identifier

Context Page

SeqP1 A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient,
and then, it continues immediately. The call causes the recipient to execute the operation.

6

SeqP2 A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient
and waiting for a response. The call causes the recipient to execute the operation and to respond the sender after the
execution.

9

SeqP3 During the execution of an operation (main operation), a nested operation call is made. After this call, the execution
of the main operation can either continue immediately or wait for the response of that nested operation call. This
way, this pattern complements SeqP1 and SeqP2.

12

SeqP4 During the execution of an operation (main operation), a response of a previously issued nested operation call
is received. The main operation’s execution uses this response to complete its behaviour. This way, this pattern
complements SeqP1 and SeqP2 with additional information regarding the response to the nested operation call
(addressed by SeqP3).

15

Modelled by means of UML State Machine Diagrams
Pattern
identifier

Context Page

StP1 As a consequence of the execution of an operation, an object is created in its first state. This operation is usually the
constructor of the object.

19

StP2 As a consequence of the execution of an operation, the behaviour of an object is completed. 23
StP3 As a consequence of the execution of an operation, an object changes its state. 27

Modelled by means of UML Class Diagrams
Pattern
identifier

Context Page

ClP1 The execution of an operation provokes the creation of a new object. 33
ClP2 The execution of an operation provokes the destruction of an object. 36

ClP3 The execution of an operation on an object returns values of concrete object’s attributes. The values are returned as
they are, without any further processing. This execution does not provoke the change of the object’s status.

38

ClP4 The execution of an operation on an object returns values that are computed based on the object’s status as a whole
(the values of concrete attributes involved in the computation are unknown or irrelevant). This execution does not
provoke the change of the object’s status.

41

ClP5 The execution of an operation on an object returns values that are computed based on values of concrete object’s
attributes. This execution does not provoke the change of the object’s status.

44

ClP6 The execution of an operation on an object changes the object’s status as a whole (the concrete modified attributes
are unknown or irrelevant).

48

ClP7 The execution of an operation on an object directly sets the information passed to the operation as values of concrete
object’s attributes, thus provoking a change in the object’s status.

53

ClP8 The execution of an operation on an object changes the values of concrete object’s attributes, thus provoking a
change in the object’s status.

58

ClP9 The execution of an operation on an object removes element(s) from a concrete object’s collection attribute, thus
provoking a change in the object’s status.

63

ClP10 The execution of an operation on an object directly adds the information passed to the operation as new element(s)
of a concrete object’s collection attribute, thus provoking a change in the object’s status.

68

4/74

4 UML Sequence Diagrams

Pattern
identifier

Context Page

SeqP1 A participant (the sender) interacts with another participant (the recipient) by calling an operation in
the recipient, and then, it continues immediately. The call causes the recipient to execute the operation.

6

SeqP2 A participant (the sender) interacts with another participant (the recipient) by calling an operation in
the recipient and waiting for a response. The call causes the recipient to execute the operation and to
respond the sender after the execution.

9

SeqP3 During the execution of an operation (main operation), a nested operation call is made. After this call,
the execution of the main operation can either continue immediately or wait for the response of that
nested operation call. This way, this pattern complements SeqP1 and SeqP2.

12

SeqP4 During the execution of an operation (main operation), a response of a previously issued nested
operation call is received. The main operation’s execution uses this response to complete its behaviour.
This way, this pattern complements SeqP1 and SeqP2 with additional information regarding the
response to the nested operation call (addressed by SeqP3).

15

5/74

Identifier Sequence diagram Pattern 1 (SeqP1)

Context

A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient, and then, it
continues immediately. The call causes the recipient to execute the operation.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Operation call.

Operation execution The execution of the operation.

UML Diagram

Key Element UML Rationale
Sender Lifeline 1 It models the Sender participant involved in the interaction.
Operation call Asynchronous Message 2 It models the Operation call when the Sender does not

wait for a response, but instead continues immediately after
sending the message.

Input data Input Arguments 3 They specify the information passed to the operation through
the Operation call.

Operation execution ExecutionSpecification 4 It shows the period of time that the recipient’s participant
devotes to the Operation execution.

:Lifeline1 :Lifeline2

asynch(inArgs)

1

3

4
2

Figure 1. UML representation that models the context given by SeqP1

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

var:operation

wasAssociatedWithc

wasStartedBy

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

u2p:className var:className

usedd

prov:value var:inputValue
u2p:className var:inputType

Figure 2. PROV template generated from the UML representation used in SeqP1 (Figure 1)

Sequence diagram Pattern 1 (SeqP1) 6/74

PROV elements

UML PROV / id Rationale
Lifeline 1 prov:Agent 1 /

var:senderObject

The sender Lifeline 1 is mapped to a prov:Agent

identified by var:senderObject. It assumes the respon-
sibility for starting the ExecutionSpecification 4 .

Asynchronous Message 2 prov:Entity 2 /
var:starter

The Asynchronous Message 2 that initiates the
ExecutionSpecification 4 of the recipient is a
prov:Entity with identifier var:starter.

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input Arguments 3 is a separate
prov:Entity identified as var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4 is a
prov:Activity with identifier var:operation.

Attributes

PROV Element Attribute / Value Description
var:senderObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which the var:senderObject 1 belongs.

var:starter 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:starter 2 is a request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
class to which var:input 3 belongs.

var:operation 4 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 4 .

tmpl:startTime /
var:operationStartTime

var:operationStartTime is an xsd:dateTime value for
the start of var:operation 4 .

tmpl:endTime /
var:operationEndTime

var:operationEndTime is an xsd:dateTime value for the
end of var:operation 4 .

PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject for

var:operation.
d prov:used It is the beginning of utilizing var:starter by var:operation.

Discussion

• Figure 2 depicts the responsibility of the Sender lifeline (var:senderObject) for the recipient lifeline to execute the
operation (var:operation). However, the recipient lifeline is not modelled in this PROV template, even though it is
the participant that executes the operation. This decision is based on other patterns’ better ability to both (1) identify the
participant responsible for executing that operation, and (2) give a more detailed information about the implications that the
execution of that operation has in the recipient participant. More specifically, these patterns are: StP1-StP3, which mainly
focus on representing possible changes in an object’s state caused by an Operation execution; and patterns ClP1-ClP10,
which put more stress on how the execution affects the status of the object responsible for performing such an execution.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the Operation call lacks Input

Sequence diagram Pattern 1 (SeqP1) 7/74

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#RequestMessage
http://uml2prov.unirioja.es/ns/u2p#RequestMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#used

data, the UML representation in Figure 1 will not include Input Arguments 3 . As a consequence, the resulting PROV
template in Figure 2 will also lack var:input 3 and its associated PROV relations. Finally, we remark that the resulting
PROV template does not reflect the usage of var:input 3 by var:operation 4 because SqDs stick to the flow of
information, not its usage. Patterns addressing CDs (ClP1-ClP10) are better suited for this purpose.

Sequence diagram Pattern 1 (SeqP1) 8/74

Identifier Sequence diagram Pattern 2 (SeqP2)

Context

A participant (the sender) interacts with another participant (the recipient) by calling an operation in the recipient and waiting
for a response. The call causes the recipient to execute the operation and to respond the sender after the execution.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Operation call.

Operation execution The execution of the operation.

Response The recipient’s response to the Operation call.

Output data The information contained in the Response.

UML Diagram

Key Element UML Rationale
Sender Lifeline 1 It models the Sender participant involved in the interaction.
Operation call Synchronous Message 2 It models the Operation call when the Sender waits for a

response.
Input data Input Arguments 3 They specify the information passed to the operation through

the Operation call.
Operation execution ExecutionSpecification 4 It shows the period of time that the recipient’s participant

devotes to the Operation execution.
Response Reply Message 5 It specifies the response to the Operation call.
Output data Output Arguments 6 They specify the information contained in the Response.

:Lifeline1 :Lifeline2

synch(inArgs)

1

3

4

2

synch(outArgs)
6

5

Figure 3. UML representation that models the context given by SeqP2

Sequence diagram Pattern 2 (SeqP2) 9/74

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

prov:value var:inputValue
u2p:className var:inputType

var:operation

wasAssociatedWithc

wasStartedBy
prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

var:response

var:output

hadMember

prov:type u2p:ReplyMessage

prov:value var:outputValue
u2p:className var:outputType

5

6

f

wasGeneratedByd

wasDerivedFrome

u2p:className var:className

usedg

Figure 4. PROV template generated from the UML representation used in SeqP2 (Figure 3)

PROV elements

UML PROV / id Rationale
Lifeline 1 prov:Agent 1 /

var:senderObject

The sender Lifeline 1 is mapped to a prov:Agent

identified by var:senderObject. It assumes the respon-
sibility for starting the ExecutionSpecification 4 .

Synchronous Message 2 prov:Entity 2 /
var:starter

The Synchronous Message 2 that initiates the
ExecutionSpecification 4 of the recipient is a
prov:Entity with identifier var:starter.

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input Arguments 3 is a separate
prov:Entity identified as var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4 is a
prov:Activity with identifier var:operation.

Reply Message 5 prov:Entity 5 /
var:response

The Reply Message 5 that responds to the
Synchronous Message 2 is a prov:Entity with
identifier var:response.

Output Arguments 6 prov:Entity 6 /
var:output

Each argument of Output Arguments 6 is a separate
prov:Entity identified as var:output.

Sequence diagram Pattern 2 (SeqP2) 10/74

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:senderObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which the var:senderObject 1 belongs.

var:starter 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:starter 2 is a request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
class to which the var:input 3 belongs.

var:operation 4 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 4 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 4 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 4 .

var:response 5 prov:type /
u2p:ReplyMessage

The value u2p:ReplyMessage shows that var:response 5

is a reply message.
var:output 6 prov:value /

var:outputValue

The value var:outputValue is the direct representation of
var:output 6 .

u2p:typeName /
var:outputType

The value var:outputType is a string with the name of the
class to which var:output 6 belongs.

PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject for

var:operation.
d prov:wasGeneratedBy It is the completion of production of var:response by var:operation.
e prov:wasDerivedFrom It is the construction of var:response based on var:starter reception.
f prov:hadMember It states that var:output is one of the elements in var:response.
g prov:used It is the beginning of utilizing var:starter by var:operation.

Discussion

• Figure 4 depicts the responsibility of the Sender lifeline (var:senderObject) for executing the operation (var:operation)
in a recipient lifeline. However, the recipient lifeline is not modelled in this PROV template, even though it is the participant
that executes the operation. This decision is based on other patterns’ better ability to both (1) identify the participant
responsible for executing that operation, and (2) give a more detailed information about the implications that the execution
of that operation has in the recipient participant. More specifically, these patterns are: StP1-StP3, which mainly focus on
representing possible changes in an object’s state caused by an Operation execution; and patterns ClP1-ClP10, which put
more stress on how the execution affects the status of the object responsible for performing such an execution.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the Operation call lacks Input
data, the UML representation in Figure 3 will not include Input Arguments 3 . As a consequence, the resulting PROV
template in Figure 4 will also lack var:input 3 and its associated PROV relations. Finally, we remark that the resulting
PROV template does not reflect the usage of var:input 3 by var:operation 4 because SqDs stick to the flow of
information, not its usage. Patterns addressing CDs (ClP1-ClP10) are better suited for this purpose.

Sequence diagram Pattern 2 (SeqP2) 11/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#RequestMessage
http://uml2prov.unirioja.es/ns/u2p#RequestMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#ReplyMessage
http://uml2prov.unirioja.es/ns/u2p#ReplyMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#used

Identifier Sequence diagram Pattern 3 (SeqP3)

Context

During the execution of an operation (main operation), a nested operation call is made. After this call, the execution of the
main operation can either continue immediately or wait for the response of that nested operation call. This way, this pattern
complements SeqP1 and SeqP2.

Key elements

(Main) Operation execution The execution of the main operation.

(Nested) Operation call The nested operation call sent during the Main operation execution.

UML Diagram

Key Element UML Rationale
Main operation exe-
cution

ExecutionSpecification 1 It shows the period of time that takes the Main operation
execution.

Nested operation call Synchronous Message 2 or
Asynchronous Message 2

It models the Nested operation call either when its sender waits
for a response, or when it does not wait for a response, but
instead continues immediately after sending the message.

a/synch(inArgs)2

SeqP2

:Lifeline2

1

:Lifeline1 :Lifeline2

asynch(args)

SeqP1

SeqP3

:Lifeline1

synch(args)
SeqP3

1
a/synch(inArgs)2

Figure 5. The left hand side is the UML representation of SeqP1 complemented by SeqP3, whereas the right hand side is the
UML representation of SeqP2 complemented by SeqP3. Only the shaded areas correspond to the UML elements contributed by
this pattern.

Sequence diagram Pattern 3 (SeqP3) 12/74

Mapping to PROV

1

var:input

var:starter

hadMember

prov:type u2p:RequestMessage

wasStartedBy

var:senderObject

SeqP1

SeqP3

var:starter

var:input

hadMember

var:operation

var:senderObject

var:response

hadMember

prov:value var:inputValue
u2p:className var:inputType

prov:type u2p:RequestMessage

prov:value var:outputValue
u2p:className var:outputType

wasGeneratedBy

var:nestedRequest

wasGeneratedBy

wasDerivedFrom

SeqP2

SeqP3

2

2

a

a

var:nestedRequest

wasGeneratedBy

prov:type u2p:RequestMessage

1

var:operation
1

used

used

prov:value var:inputValue
u2p:className var:inputType

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:className var:className

prov:type u2p:RequestMessage

prov:type u2p:RequestMessage

u2p:className var:className

wasStartedBy

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

wasAssociatedWith

wasAssociatedWith

var:output

Figure 6. At the top, it is a PROV template generated from the UML representation in the left side of Figure 5. At the bottom,
it is a PROV template generated from the UML representation in the right side of Figure 5. Only the shaded areas correspond to
the PROV elements contributed by this pattern.

PROV elements

UML PROV / id Rationale
ExecutionSpecification 1 prov:Activity 1 /

var:operation

The ExecutionSpecification 1 is a
prov:Activity with identifier var:operation.

Synchronous Message 2 or
Asynchronous Message 2

prov:Entity 2 /
var:nestedRequest

The Synchronous Message or
Asynchronous Message 2 sent from the
ExecutionSpecification 1 is a prov:Entity

with identifier var:nestedRequest.

Sequence diagram Pattern 3 (SeqP3) 13/74

http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:operation 1 prov:type /

var:operationName

The value var:operationName is the name of the operation
var:operation 1

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime

value for the start of var:operation 4 .
tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 4 .

var:nestedRequest 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:nestedRequest 5 is a request message.

PROV relations

PROV Relation Description
a prov:wasGeneratedBy It is the completion of production of var:nestedRequest by var:operation.

Discussion

• The same element (‘request message’ in this case) appears in different patterns playing different roles. In SeqP3 the request
message models the call started from an ExecutionSpecification. However, in SeqP1 and SeqP2, this same request
message models the call that starts an ExecutionSpecification. The former way of looking at the request message
is translated into var:nestedRequest (in SeqP3), and the latter is translated into var:starter (in SeqP1 and SeqP2).
Consequently, despite var:nestedRequest and var:starter being two different elements of type prov:Entity

appearing in two different PROV templates, both must be assigned to the same value during the execution of the application.
Therefore, after merging all the expanded PROV templates, a single prov:Entity will be generated.

Sequence diagram Pattern 3 (SeqP3) 14/74

http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#RequestMessage
http://uml2prov.unirioja.es/ns/u2p#RequestMessage
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Identifier Sequence diagram Pattern 4 (SeqP4)

Context

During the execution of an operation (main operation), a response of a previously issued nested operation call is received. The
main operation’s execution uses this response to complete its behaviour. This way, this pattern complements SeqP1 and SeqP2
with additional information regarding the response to the nested operation call (addressed by SeqP3).

Key elements

(Main) Operation execution The execution of the main operation.

(Nested) Response The response to a nested operation call.

(Main) Response The response of the Main operation execution. This element is only identified when this
pattern complements SeqP2.

UML Diagram

Key Element UML Rationale
Main operation execution ExecutionSpecification 1 It shows the period of time that takes the Main operation

execution.
Nested response Reply Message 2 It specifies the response received in the Main operation

execution.
Main response Reply Message 3 In case of complementing SeqP2, it specifies the response

of the Main operation execution.

:Lifeline1:Lifeline1

asynch1(inArgs)

synch2(outArgs)

synch2(inArgs)

synch2(outArgs)synch1(outArgs)

:Lifeline2

synch1(inArgs)
synch2(inArgs)

1 3
2

SeqP1

SeqP4

SeqP2

SeqP4

2

1

:Lifeline2

Figure 7. The left hand side is the UML representation that models the context given by SeqP1 complemented by SeqP4,
wheres the right hand side is the UML representation that models the context given by SeqP2 complemented by SeqP4. Only
the shaded areas correspond to the UML elements contributed by this pattern.

Sequence diagram Pattern 4 (SeqP4) 15/74

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage
wasAssociatedWith

wasStartedBy

var:senderObject

used

SeqP1

SeqP4

prov:type u2p:ReplyMessage

a

2

var:senderObject

used

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

var:operation

wasStartedBy

var:response

hadMember

wasGeneratedBy

wasDerivedFrom

1

SeqP2

SeqP4

var:output

a

prov:type u2p:ReplyMessage

var:nestedResponse

wasDerivedFromb

2

3

u2p:className var: className

u2p:className var: className

wasAssociatedWith

prov:value var:inputValue
u2p:className var:inputType

prov:value var:inputValue
u2p:className var:inputType

prov:value var:outputValue
u2p:className var:outputType

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:operation

1

prov:type u2p:ReplyMessage

var:nestedResponse

2

used

used

Figure 8. At the top, it is the PROV template generated from the UML representation in the left side of Figure 7. At the
bottom, it is a PROV template generated from the UML representation in the right side of Figure 7. Only the shaded areas
correspond to the PROV elements contributed by this pattern.

Sequence diagram Pattern 4 (SeqP4) 16/74

PROV elements

UML PROV / id Rationale
ExecutionSpecification 1 prov:Activity 1 /

var:operation

The ExecutionSpecification 1 is a
prov:Activity with identifier var:operation.

Reply Message 2 prov:Entity 2 /
var:nestedResponse

The Reply Message 2 that is received in the
ExecutionSpecification 1 is a prov:Entity with
identifier var:nestedResponse.

Reply Message 3 prov:Entity 3 /
var:response

In case of complementing SeqP2, the Reply Message
3 sent from the ExecutionSpecification 1 is a
prov:Entity with identifier var:response. For details,
see SeqP2.

Attributes

PROV Element Attribute / Value Description
var:operation 1 prov:type /

var:operationName

The value var:operationName is the name of the op-
eration var:operation 1 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime

value for the start of var:operation 1 .
tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime

value for the end of var:operation 1 .
var:nestedResponse 2 prov:type /

u2p:ReplyMessage

The value u2p:ReplyMessage shows that
var:response 2 is a reply message.

var:response 3 prov:type /
u2p:ReplyMessage

The value u2p:ReplyMessage shows that
var:response 3 is a reply message.

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:nestedResponse by var:operation.
b prov:wasDerivedFrom It is the construction of var:response based on var:nestedResponse.

Discussion

• As it could be inferred from the context, a requirement for this pattern to be applied is that the Main operation execution
uses the Nested response during its execution. This causes the relations a prov:used and b prov:wasDerivedFrom

to appear in the template; the former showing that when the ExecutionSpecification 1 receives the nested Reply

Message 2 , it utilises that Reply Message 2 to complete its behaviour; and the latter showing that the main Reply

Message 3 is influenced by the nested Reply Message 2 (this last one can only be applied if the Main operation
execution is triggered by a synchronous message, i.e. when SeqP4 complements SeqP2). If a specific scenario does not
meet the aforementioned requirement, i.e., the Main operation execution does not use the Nested response or it is not worth
recording such a dependency, this pattern should not be applied. Even in this case, the provenance about the nested operation
call and its corresponding response would be captured thanks to SeqP1 and SeqP2, respectively.

Sequence diagram Pattern 4 (SeqP4) 17/74

http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#ReplyMessage
http://uml2prov.unirioja.es/ns/u2p#ReplyMessage
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#ReplyMessage
http://uml2prov.unirioja.es/ns/u2p#ReplyMessage
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasDerivedFrom

5 UML State Machine Diagrams

Pattern
identifier

Context Page

StP1 As a consequence of the execution of an operation, an object is created in its first state. This operation
is usually the constructor of the object.

19

StP2 As a consequence of the execution of an operation, the behaviour of an object is completed. 23
StP3 As a consequence of the execution of an operation, an object changes its state. 27

18/74

Identifier State machine diagram Pattern 1 (StP1)

Context

As a consequence of the execution of an operation, an object is created in its first state. This operation is usually the constructor
of the object.

Key elements

Object The object created as a consequence of the execution of the operation.

First object’s state The first state after the object creation. This is the first state the object may
undergo during its lifetime.

Object creation The execution of the operation that creates the object.

UML Diagram

Key Element UML Rationale
Object Object 1 It represents the created object.

Note: since Object lacks a graphical representation in UML State Ma-
chine diagrams, Figure 9 does not depict this element.

StateMachine 2 In UML, a StateMachine represents the set of states an Object can go
through during its lifetime in response to events.

Object creation Initial

Pseudostate 3

It refers to the execution of the operation that creates the Object, leading
it to its first state.

First object’s state State 4 It models the first state of the Object.

State Machine2

State

43

Figure 9. UML representation that models the context given by StP1

Mapping to PROV

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:operation

4

3

a

c

b

specializationOf

wasGeneratedBy

prov:type var:className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

1

2

u2p:typeName var:typeName

Figure 10. PROV template generated from the UML representation used in StP1 (Figure 9)

State machine diagram Pattern 1 (StP1) 19/74

PROV elements

UML PROV / id Rationale
Object 1 prov:Agent 1 /

var:object

The Object 1 bears some form of responsibility for the existence
of the StateMachine 2 , since the existence of StateMachine 2

does not make sense without an Object 1 . To reflect this fact, the
Object 1 is mapped to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states, which
will be specialized by each concrete state the object goes through.

Initial

Pseudostate 3

prov:Activity 3 /
var:operation

The Initial Pseudostate 3 , referring to the execution of the
operation that creates the Object 1 , is a prov:Activity with the
identifier var:operation.

State 4 prov:Entity 4 /
var:postObject

The State 4 is a prov:Entity identified by var:postObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 after (post) the object creation.

Attributes

PROV Element Attribute / Value Description
var:object 1 u2p:typeName /

var:className

The value var:className is the string with the name of the class
to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that var:objectSM 2 is
a state machine.

var:operation 3 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 3

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value for
the start of var:operation 3 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 3 .

var:postObject 4 prov:type /
var:className

The value var:className is the name of the class to which the
object in the state var:postObject 4 belongs.

u2p:state /
var:targetState

The value var:targetState is the string with the name of the
state var:postObject 4 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
c prov:specializationOf var:postObject is a specialization of var:objectSM.

Discussion

• Note that Figure 9 only contains simple states. We do not deal with composite or submachine states, and focus only on simple
states, because the former may be transformed into the latter by resorting to a flattening process consisting of removing
composite states as well as submachine states. In fact, to flatten State Machine diagrams is a very common approach in
contexts such as model checking and code generation [6]. However, the user might be interested in representing composite
states directly into the PROV templates, perhaps because she/he is interested in collecting information about them, or just
because she/he does not want to flatten the State Machine diagram. We can give an insight into how composite states can
be mapped to PROV by placing the elements from Figure 9 inside a Composite State 5 (see Figure 11). A reader
familiar with the UML specification will realize that the semantics of the Initial Pseudostate 3 in Figures 9 and 11

State machine diagram Pattern 1 (StP1) 20/74

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#StateMachine
http://uml2prov.unirioja.es/ns/u2p#StateMachine
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#state
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#specializationOf

are different, but these semantic nuances would have no effect on the PROV transformation. The transformation of Figure 11
is shown in Figure 12. Both Figure 11 and 12 highlight the added elements by blurring the elements coming from Figure 9
and Figure 10, respectively. Briefly speaking, the new Composite State 5 is translated into a prov:Entity identified
by var:compState 5 , which is associated with var:objectSM 2 and var:targetState 4 by means of the relations
d prov:specializationOf and e prov:hadMember, respectively. At this point, it is also worth remarking that for
this example we have used a simple composite state (i.e., Composite State 5), which means that only one substate is
active at a given time within such a state; but we could have used orthogonal composite states instead, which means that
within such a state several substates are active at the same time. Note that both types of composite states would be translated
into the same PROV template (see Figure 12); nevertheless, the generated bindings would be different. In case of a simple
composite state, as there can be only one active substate at the same time, there would be only one value associated with
the variable var:postObject 4 . Conversely, in case of an orthogonal composite state, var:postObject 4 will be
associated with several values (as many as active states).

State Machine2

State2

4

Composite State5

3

Figure 11. Excerpt of a UML State Machine diagram locating the UML elements from StP1 in a simple composite state.

var:postObject

var:objectSM

wasAttributedTovar:operation

4

3

a

d

b

specializationOf

wasGeneratedBy

1

2

e hadMember

var:compState

5

var:object
prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:className
u2p:state var:targetState

prov:type u2p:StateMachine

u2p:state var:compStateName

u2p:typeName var:typeName

Figure 12. PROV template generated from the UML diagram in Figure 11

PROV elements

UML PROV / id Rationale
Composite State 5 prov:Entity 5 /

var:compState

The Composite State 5 is a prov:Entity identified by
var:compState.

Attributes

PROV Element Attribute / Value Description
var:compState 5 u2p:state /

var:compStateName

The value var:compStateName is the string with the name of
the state var:compState 5

State machine diagram Pattern 1 (StP1) 21/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p#state

PROV relations

PROV Relation Description
d prov:specializationOf var:compState is a specialization of var:objectSM.
e prov:hadMember It states that var:postObject is one of the elements in var:compState.

State machine diagram Pattern 1 (StP1) 22/74

http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember

Identifier State machine diagram Pattern 2 (StP2)

Context

As a consequence of the execution of an operation, the behaviour of an object is completed.

Key elements

Object The object that completes its behaviour.

Pre-operation object’s state The state of the object before the execution of the operation. This is
one of the states the object may undergo during its lifetime.

Final object’s state The state that represents that the object’s behaviour is completed.

Operation execution The execution of the operation that leads the object to complete its behaviour.

UML Diagram

Key Element UML Rationale
Object Object 1 It represents the object whose behaviour is completed.

Note: since Object lacks a graphical representation in UML State
Machine diagrams, Figure 13 does not depict this element.

StateMachine 2 In UML, a StateMachine can be used to express the set of states
through which the Object goes during its lifetime in response to events.

Pre-operation object’s
state

State 3 It models the state of the Object before the Operation execution.

Final object’s state FinalState 4 It models the state of the Object after the Operation execution.
Operation execution Event 5 It specifies that the Operation execution that triggers the change in the

Object’s state has taken place.

State Machine2

State1

3 45
event

Figure 13. UML representation that models the context given by StP2

Mapping to PROV

var:preObject

var:operation

wasInvalidatedByc

b used
var:objectSM

var:object

wasAttributedTo

prov:type var:className
u2p:state var:sourceState

a

d specializationOf

1

2

3

5

prov:type u2p:StateMachine

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Figure 14. PROV template generated from the UML representation used in StP2 (Figure 13)

State machine diagram Pattern 2 (StP2) 23/74

PROV elements

UML PROV / id Rationale
Object 1 prov:Agent 1 /

var:object

The Object 1 bears some form of responsibility for the existence
of the StateMachine 2 , since the existence of StateMachine 2

does not make sense without an Object 1 . To reflect this fact, the
Object 1 is mapped to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states, which
will be specialized by each state the object goes through.

State 3 prov:Entity 3 /
var:preObject

The State 3 is a prov:Entity identified by var:preObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 before (pre) the execution of the operation.

FinalState 4 None / Without mapping (see the discussion block for an explanation about
this decision).

Event 5 prov:Activity 5 /
var:operation

The Event 5 represents that the execution of an operation has taken
place. Such an execution is a prov:Activity with the identifier
var:operation.

Attributes

PROV Element Attribute / Value Description
var:object 1 u2p:typeName /

var:className

The value var:className is the string with the name of the class
to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that var:objectSM 2 is
a state machine.

var:preObject 3 prov:type /
var:className

The value var:className is the string with the name of the class
to which the object in the state var:preObject 3 belongs.

u2p:state /
var:sourceState

The value var:sourceState is the string with the name of the
state var:preObject 3 .

var:operation 5 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 5 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value for
the start of var:operation 5 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 5 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.
d prov:specializationOf var:preObject is a specialization of var:objectSM.

Discussion

• This pattern is consistent with ClP2 because the completion of the object’s behaviour usually involves its destruction. Among
the different reasons why an Object can complete its behaviour, we can distinguish its destruction, from the remainder cases.
In order to be consistent with ClP2 (that addresses the execution of an operation which provokes the destruction of an object),
we have decided not to explicitly map the FinalState 4 in the PROV template but including its semantics (the completion
of the object’s behaviour) by the relation c prov:wasInvalidatedBy showing that var:preObject 3 is not longer

State machine diagram Pattern 2 (StP2) 24/74

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#StateMachine
http://uml2prov.unirioja.es/ns/u2p#StateMachine
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#state
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#wasInvalidatedBy

available. However, if the user is interested in explicitly representing the FinalState 4 into the PROV templates, we refer
him/her to StP3, where the state of the Object before and after an Operation execution is included.

• Figure 13 only contains simple states. We do not deal with composite or submachine states, and focus only on simple
states, because the former may be transformed into the latter by resorting to a flattening process consisting of removing
composite states as well as submachine states. In fact, to flatten State Machine diagrams is a very common approach in
contexts such as model checking and code generation [6]. However, the user might be interested in representing composite
states directly into the PROV templates, perhaps because she/he is interested in collecting information about them, or just
because she/he does not want to flatten the State Machine diagram. We can give an insight into how composite states can
be mapped to PROV by placing the elements from Figure 13 inside a Composite State 5 (see Figure 15). A reader
familiar with the UML specification will realize that the semantics of the FinalState 4 in Figures 13 and 15 are different,
but these semantic nuances would have no effect on the PROV transformation. The transformation of Figure 15 is shown
in Figure 16. Both Figure 15 and 16 highlight the added elements by blurring the elements coming from Figure 13 and
Figure 14, respectively. Briefly speaking, the new Composite State 6 is translated into a prov:Entity identified
by var:compState 6 , which is associated with var:objectSM 2 and var:preObject 3 by means of the relations
f prov:specializationOf and e prov:hadMember, respectively. At this point, it is also worth remarking that for
this example we have used a simple composite state (i.e., Composite State 6), which means that only one substate is
active at a given time within such a state; but we could have used orthogonal composite states instead, which means that
within such a state several substates are active at the same time. Note that both types of composite states would be translated
into the same PROV template (see Figure 16); nevertheless, the generated bindings would be different. In case of a simple
composite state, as there can be only one active substate at the same time, there would be only one value associated with the
variable var:preObject 3 . Conversely, in case of an orthogonal composite state, var:preObject 3 will be associated
with several values (as many as active states).

State Machine2

State1

3 4
Composite State6

event

5

Figure 15. Excerpt of a UML State Machine diagram locating the UML elements from StP2 in a simple composite state.

var:preObject

var:operation

wasInvalidatedByc

b used

var:objectSM

var:object

wasAttributedToa

specializationOf

u2p:state var:compStateName

1

2

3

5

var:compState
hadMembere

f6

prov:type u2p:StateMachine

prov:type var:className
u2p:state var:sourceState

prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Figure 16. PROV template generated from the UML diagram in Figure 15

PROV elements

UML PROV / id Rationale
Composite State 6 prov:Entity 6 /

var:compState

The Composite State 6 is a prov:Entity identified by
var:compState.

State machine diagram Pattern 2 (StP2) 25/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:compState 6 u2p:state /

var:compStateName

The value var:compStateName is the string with the name of
the state var:compState 6

PROV relations

PROV Relation Description
e prov:hadMember It states that var:preObject is one of the elements in var:compState.
f prov:specializationOf var:compState is a specialization of var:objectSM.

State machine diagram Pattern 2 (StP2) 26/74

http://uml2prov.unirioja.es/ns/u2p#state
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#specializationOf

Identifier State machine diagram Pattern 3 (StP3)

Context

As a consequence of the execution of an operation, an object changes its state.

Key elements

Object The object that changes its state.

Pre-operation object’s state The state of the object before the execution of the operation. This is
one of the states the object may undergo during its lifeline.

Post-operation object’s state The state of the object after the execution of the operation. This is one
of the states the object may undergo during its lifeline.

Operation execution The execution of the operation that leads a change in the Object’s state.

UML Diagram

Key Element UML Rationale
Object Object 1 It represents the object that changes its state.

Note: since Object lacks a graphical representation in UML State Ma-
chine diagrams, Figure 17 does not depict this element.

StateMachine 2 In UML, a StateMachine can be used to express the set of object’s states
through which the Object goes during its lifetime in response to events.

Pre-operation object’s
state

State 3 It models the state of the Object before the Operation execution.

Post-operation ob-
ject’s state

State 4 It models the state of the Object after the Operation execution.

Operation execution Event 5 It specifies that the Operation execution that triggers the change in the
Object’s state has taken place.

State1
event

State Machine2

3 5

State2

4

Figure 17. UML representation that models the context given by StP3

State machine diagram Pattern 3 (StP3) 27/74

Mapping to PROV

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:preObject specializationOf

var:operation

wasInvalidatedBy

3

4

5

a

c

b

d

g

f

e

specializationOf

wasDerivedFrom
wasGeneratedBy

used

1

2

prov:type var: className
u2p:state var:sourceState

prov:type var: className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Figure 18. PROV template generated from the UML representation used in StP3 (Figure 17)

PROV elements

UML PROV / id Rationale
Object 1 prov:Agent 1 /

var:object

The Object 1 bears some form of responsibility for the existence
of the StateMachine 2 , since the existence of StateMachine 2

does not make sense without an Object 1 . To reflect this fact, the
Object 1 is mapped to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states, which
will be specialized by each state the object goes through.

State 3 prov:Entity 3 /
var:preObject

The State 3 is a prov:Entity identified by var:preObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 before (pre) the execution of the operation.

State 4 prov:Entity 4 /
var:postObject

The State 4 is a prov:Entity identified by var:postObject. We
use this name for this identifier because it corresponds to the state of
the Object 1 after (post) the execution of the operation.

Event 5 prov:Activity 5 /
var:operation

The Event 5 represents that the execution of an operation has taken
place. Such an execution is a prov:Activity with the identifier
var:operation.

State machine diagram Pattern 3 (StP3) 28/74

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity

Attributes

PROV Element Attribute / Value Description
var:object 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that var:objectSM 2

is a state machine.
var:preObject 3 prov:type /

var:className

The value var:className is the name of the class to which
the object in the state var:preObject 3 belongs.

u2p:state /
var:sourceState

The value var:sourceState is the string with the name of
the state var:preObject 3 .

var:postObject 4 prov:type /
var:className

The value var:className is the name of the class to which
the object in the state var:postObject 4 belongs.

u2p:state /
var:targetState

The value var:targetState is the string with the name of
the state var:postObject 4 .

var:operation 5 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 5 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 5 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 5 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:specializationOf var:preObject is a specialization of var:objectSM.
c prov:specializationOf var:postObject is a specialization of var:objectSM.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:used It is the beginning of utilizing var:preObject by var:operation.
f prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
g prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.

Discussion

• Figure 17 only contains simple states. We do not deal with composite or submachine states, and focus only on simple states,
because the former may be transformed into the latter by resorting to a flattening process consisting of removing composite
states as well as submachine states. In fact, to flatten State Machine diagrams is a very common approach in contexts such as
model checking and code generation [6]. However, the user might be interested in representing composite states directly into
the PROV templates, perhaps because she/he is interested in collecting information about them, or just because she/he does
not want to flatten the State Machine diagram. We can give an insight into how composite states can be mapped to PROV
by placing the elements from Figure 17 inside a Composite State 5 (see Figure 19). A reader familiar with the UML
specification will realize that the semantics of the UML representation in Figures 17 and 19 are different, but these semantic
nuances would have no effect on the PROV transformation. The transformation of Figure 19 is shown in Figure 20. Both
Figure 19 and 20 highlight the added elements by blurring the elements coming from Figure 17 and Figure 18, respectively.
Briefly speaking, the new Composite State 6 is translated into a prov:Entity identified by var:compState 6 ,
which is associated with var:objectSM 2 , var:preObject 3 , and var:postObject 4 by means of the relations
j prov:specializationOf, h prov:hadMember, and i prov:hadMember, respectively. At this point, it is also

worth remarking that for this example we have used a simple composite state (i.e., Composite State 6), which means
that only one substate is active at a given time within such a state; but we could have used orthogonal composite states
instead, which means that within such a state several substates are active at the same time. Note that both types of composite
states would be translated into the same PROV template (see Figure 20); nevertheless, the generated bindings would be

State machine diagram Pattern 3 (StP3) 29/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#StateMachine
http://uml2prov.unirioja.es/ns/u2p#StateMachine
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#state
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#state
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

different. In case of a simple composite state, as there can be only one active substate at the same time, there would be
only one value associated with the variable var:preObject 3 and another value with var:postObject 4 . Conversely,
in case of an orthogonal composite state, var:preObject 3 and var:postObject 4 will be associated with several
values (as many as active states).

State1
event

State Machine2

3 5

State2

4

Composite State6

Figure 19. Excerpt of a UML State Machine diagram locating the UML elements from StP3 in a simple composite state.

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine
var:preObject

hadMember

var:operation

wasInvalidatedBy

3

4

5
a

i

h

d

g

f

e

prov:type var:className
u2p:state var:sourceState

hadMember

wasGeneratedBy

prov:type var:className
u2p:state var:targetState

used

1

2

var:compState

6

specializationOfj

wasDerivedFrom

prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:state var:compStateName

u2p:typeName var:typeName

Figure 20. PROV template generated from the UML diagram in Figure 19

PROV elements

UML PROV / id Rationale
Composite State 6 prov:Entity 6 /

var:compState

The Composite State 6 is a prov:Entity identified by
var:compState.

Attributes

PROV Element Attribute / Value Description
var:compState 6 u2p:state /

var:compStateName

The value var:compStateName is the string with the name of
the state var:compState 6

State machine diagram Pattern 3 (StP3) 30/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p#state

PROV relations

PROV Relation Description
h prov:hadMember It states that var:preObject is one of the elements in var:compState.
i prov:hadMember It states that var:postObject is one of the elements in var:compState.
j prov:specializationOf var:compState is a specialization of var:objectSM.

State machine diagram Pattern 3 (StP3) 31/74

http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#specializationOf

6 UML Class Diagrams

Pattern
identifier

Context Page

ClP1 The execution of an operation provokes the creation of a new object. 33
ClP2 The execution of an operation provokes the destruction of an object. 36
ClP3 The execution of an operation on an object returns values of concrete object’s attributes. The values

are returned as they are, without any further processing. This execution does not provoke the change of
the object’s status.

38

ClP4 The execution of an operation on an object returns values that are computed based on the object’s status
as a whole (the values of concrete attributes involved in the computation are unknown or irrelevant).
This execution does not provoke the change of the object’s status.

41

ClP5 The execution of an operation on an object returns values that are computed based on values of concrete
object’s attributes. This execution does not provoke the change of the object’s status.

44

ClP6 The execution of an operation on an object changes the object’s status as a whole (the concrete modified
attributes are unknown or irrelevant).

48

ClP7 The execution of an operation on an object directly sets the information passed to the operation as
values of concrete object’s attributes, thus provoking a change in the object’s status.

53

ClP8 The execution of an operation on an object changes the values of concrete object’s attributes, thus
provoking a change in the object’s status.

58

ClP9 The execution of an operation on an object removes element(s) from a concrete object’s collection
attribute, thus provoking a change in the object’s status.

63

ClP10 The execution of an operation on an object directly adds the information passed to the operation as new
element(s) of a concrete object’s collection attribute, thus provoking a change in the object’s status.

68

32/74

Identifier Class diagram Pattern 1 (ClP1)

Context

The execution of an operation provokes the creation of a new object.

Key elements

Object The object created as a consequence of the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes The characteristics of the Object.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
after the execution of the operation.

Operation execution Operation 2

«create»
The Operation 2 stereotyped by «create» represents the exe-
cuted operation that creates the Object.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

create +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 21. UML representation that models the context given by ClP1

Mapping to PROV

var:attribute

var:operation

var:postObject

var:input

2

3

a

b

c

d

wasGeneratedBy

hadMember

wasDerivedFrom

prov:value var:inputValue
u2p:typeName var:inputType

used

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type var:operationName

u2p:typeName var:className
prov:type u2p:Object

1

4

Figure 22. PROV template generated from the UML representation used in ClP1 (Figure 21)

Class diagram Pattern 1 (ClP1) 33/74

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:postObject

The Class 1 that models the object that is created by the operation
is a prov:Entity identified as var:postObject. We use the
prefix post in this identifier because the object is the result of the
executed operation.

Operation 2

«create»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «create» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4 prov:Entity 4 /
var:attribute

Each attribute of Attributes 4 is a separate prov:Entity with
identifier var:attribute.

Attributes

PROV Element Attribute / Value Description
var:postObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:postObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:attribute 4 prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:attribute 4

is an attribute.
prov:value /
var:attributeValue

The value var:attributeValue is the direct representation
of var:attribute 4 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of var:attribute 4 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the name
of the type of var:attribute 4 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
c prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
d prov:hadMember It states that var:attribute is one of the elements in var:postObject.

Discussion

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the operation that creates the object

Class diagram Pattern 1 (ClP1) 34/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember

lacks Input data, the UML representation in Figure 21 will not include Input Parameters 3 . As a consequence, the
resulting PROV template in Figure 22 will also lack var:input 3 and its associated PROV relations.

Class diagram Pattern 1 (ClP1) 35/74

Identifier Class diagram Pattern 2 (ClP2)

Context

The execution of an operation provokes the destruction of an object.

Key elements

Object The object destroyed as a consequence of the execution of the operation.

Operation execution The execution of the operation.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour by means

of classes. Thus, we use Class 1 to represent the destroyed Object.
Operation execution Operation 2

«destroy»
The Operation 2 stereotyped by «destroy» represents the executed op-
eration that destroys the Object.

Class
+attributeName: Type

destroy +operationName()2

1

Figure 23. UML representation that models the context given by ClP2

Mapping to PROV

var:operationvar:preObject

2

a wasInvalidatedBy

u2p:typeName var:className
prov:type u2p:Object

1

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 24. PROV template generated from the UML representation used in ClP2 (Figure 23)

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object that is destroyed by the operation is a
prov:Entity identified as var:preObject. We use the prefix pre in this
identifier because it is the object before the execution of the operation.

Operation 2

«destroy»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «destroy» is a
prov:Activity identified by var:operation.

Class diagram Pattern 2 (ClP2) 36/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1 is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 2 .

PROV relations

PROV Relation Description
a prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.

Discussion

• This pattern is consistent with ClP2 because the completion of the object’s behaviour usually involves its destruction.

Class diagram Pattern 2 (ClP2) 37/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#wasInvalidatedBy

Identifier Class diagram Pattern 3 (ClP3)

Context

The execution of an operation on an object returns values of concrete object’s attributes. The values are returned as they are,
without any further processing. This execution does not provoke the change of the object’s status.

Key elements

Object The object on which the operation is executed.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Output data The information obtained from the Operation execution.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the
Object on which the operation is executed.

Operation execution Operation 2

«get»/«search»
The Operation 2 stereotyped by «get»/«search» repre-
sents the executed operation. Concretely, operations stereotyped
by «get» return values of concrete Object’s attributes, whereas
«search» is used when the operation returns elements belonging
to a collection attribute of the Object.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Output data Output Parameters 4 They depict the information obtained from the Operation execution.

Class

+operationName(in param1: Type2, in param2:Type3):Type42
3

1

4
 «get»/«search»

+attributeName: Type1

Figure 25. UML representation that models the context given by ClP3

Mapping to PROV

used

var:input

var:operation

var:response

hadMember

prov:value var:outputValue
u2p:typeName var:outputType

wasGeneratedBy

wasDerivedFrom

2

var:output

b

c

d

var:preObject

useda

e

u2p:typeName var:className
prov:type u2p:Object

3

4.1

4.2tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

1
prov:value var:inputValue
u2p:typeName var:inputType

Figure 26. PROV template generated from the UML representation used in ClP3 (Figure 25)

Class diagram Pattern 3 (ClP3) 38/74

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object on which the operation is
executed is a prov:Entity identified as var:preObject. We
use the prefix pre in this identifier because it is the object before the
execution of the operation.

Operation 2

«get»/«search»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by
«get»/«search» is a prov:Activity identified by
var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Output Parameters 4
prov:Entity 4.1 /
var:response

The information obtained by the execution of the operation is a
prov:Entity identified by var:response. See the discussion
block for an explanation about the existence of var:response.

prov:Entity 4.2 /
var:output

Each parameter of Output Parameters 4 is a separate
prov:Entity identified as var:output.

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1 is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
Operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:output 4.2 prov:value /
var:outputValue

The value var:outputValue is the direct representation of
var:output 4.2 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:preObject by var:operation.
b prov:used It is the beginning of utilizing var:input by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:response by var:operation.
d prov:wasDerivedFrom It is the construction of var:response based on var:input.
e prov:hadMember It states that var:output is one of the elements in var:response.

Discussion

Class diagram Pattern 3 (ClP3) 39/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 25 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 26 will also lack var:input 3 and its associated PROV relations.

• In order to homogenise the UML Class representations in ClP1-ClP10, Output data have been specified by Output

Parameters with return direction. Nevertheless, these Output Parameters could have been modelled with either inout
or out directions, having no effect in their transformation to PROV.

• A concrete nuance in this pattern is that the Output data (var:output) are not computed by the Operation execution
(var:operation); that is, these data already existed before the Operation execution. Thus, a prov:wasGeneratedBy
relation between var:output and var:operation does not make sense in this pattern (in contrast to ClP4-ClP6, and
ClP7-ClP10 when they consider Output data). To reflect this pattern’s nuance in the PROV template and taking into account
the consistency between the different kinds of patterns, we have taken inspiration from how UML sequence diagram patterns
(e.g., SeqP2) address the Output data. We have made this decision because the semantics of the sequence diagrams patterns
(in terms of Output data) bears a strong resemblance with this pattern. Thus, we have included a prov:Entity identified by
var:response 4.1 related to (1) var:operation 2 , by means of c prov:wasGeneratedBy (to represent the fact that
it is the response who is generated by the Operation execution), and (2) var:output 4.2 , through e prov:hadMember

(to show that such a response is composed by the concrete output values).

Class diagram Pattern 3 (ClP3) 40/74

http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember

Identifier Class diagram Pattern 4 (ClP4)

Context

The execution of an operation on an object returns values that are computed based on the object’s status as a whole (the values
of concrete attributes involved in the computation are unknown or irrelevant). This execution does not provoke the change of
the object’s status.

Key elements

Object The object on which the operation is executed.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Output data The information obtained from the Operation execution.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the
Object on which the operation is executed.

Operation execution Operation 2

«process»
The Operation 2 stereotyped by «process» represents
the executed operation. Concretely, operations stereotyped by
«process» return values that are computed based on the object’s
status as a whole.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Output data Output Parameters 4 They depict the information obtained from the Operation execution.

Class
+attributeName: Type1

process +operationName(in param1: Type2, in param2:Type3):Type42
3

1

4

Figure 27. UML representation that models the context given by ClP4

Class diagram Pattern 4 (ClP4) 41/74

Mapping to PROV

used

var:input

var:operation

var:outputwasDerivedFrom

wasGeneratedBy

wasDerivedFrom

2
b

c

d

var:preObject

useda

e

u2p:typeName var:className
prov:type u2p:Object

3

4

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

1

prov:value var:inputValue
u2p:typeName var:inputType

prov:value var:outputValue
u2p:typeName var:outputType

Figure 28. PROV template generated from the UML representation used in ClP4 (Figure 27)

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object on which the operation is
executed is a prov:Entity identified as var:preObject. We
use the prefix pre in this identifier because it is the object before
the execution of the operation.

Operation 2

«process»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «process» is
a prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Output Parameters 4 prov:Entity 4 /
var:output

Each parameter of Output Parameters 4 is a separate
prov:Entity identified as var:output.

Class diagram Pattern 4 (ClP4) 42/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the name of the class to which
var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1 is an
object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
Operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value for
the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:output 4 prov:value /
var:outputValue

The value var:outputValue is the direct representation of
var:output 4 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 4 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:preObject by var:operation.
b prov:used It is the beginning of utilizing var:input by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
d prov:wasDerivedFrom It is the construction of var:output based on var:input.
e prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Discussion

• Among the Class Diagrams patterns, both ClP4 and ClP5 address the execution of an operation that returns values computed
based on information included on an object. While ClP4 considers the object’s status as a whole (without taking into account
the concrete attributes’ values considered for its computation), ClP5 identifies the concrete attributes used to compute such
information. Thus, ClP4 gives a coarser grained provenance than ClP5.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 27 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 28 will also lack var:input 3 and its associated PROV relations.

• In order to homogenise the UML Class representations in ClP1-ClP10, Output data have been specified by Output

Parameters with return direction. Nevertheless, these Output Parameters could have been modelled with either inout
or out directions, having no effect in their transformation to PROV.

Class diagram Pattern 4 (ClP4) 43/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasDerivedFrom

Identifier Class diagram Pattern 5 (ClP5)

Context

The execution of an operation on an object returns values that are computed based on values of concrete object’s attributes.
This execution does not provoke the change of the object’s status.

Key elements

Object The object on which the operation is executed.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Output data The information obtained from the Operation execution.

Source Object’s attributes The concrete characteristics of the Object that are used to compute the Output data.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour by

means of classes. Thus, we use Class 1 to represent the Object on
which the operation is executed.

Operation exe-
cution

Operation 2

«predicate»/
«property»/
«void-accessor»

The Operation 2 stereotyped by «predicate»/«property»/
«void-accessor» represents the executed operation. Each stereotype
denotes a behaviour with specific nuances (see the discussion block); nev-
ertheless, all of them process the Output data based on values of concrete
object’s attributes without modifying the object’s status.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Output data Output Parameters 4 They depict the information obtained from the Operation execution.
Source Object’s
attributes

Attributes 5 They represent the characteristics of the Object, whose values are used to
compute the Output data.

Class

+operationName(in param1: Type2, in param2:Type3):Type42
3

1

4
«predicate»/«property»/«void-accessor»

5 +attributeName: Type1

Figure 29. UML representation that models the context given by ClP5

Class diagram Pattern 5 (ClP5) 44/74

Mapping to PROV

used

var:input

var:operation

var:output

wasDerivedFrom

wasGeneratedBy

wasDerivedFrom

2

var:sourceAttribute

b

c

d

var:preObject

useda

e

u2p:typeName var:className
prov:type u2p:Object

3

4

5

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

1
prov:value var:inputValue
u2p:typeName var:inputType

prov:value var:outputValue
u2p:typeName var:outputType

prov:type u2p:Attribute
prov:value var:sourceAttributeValue
u2p:attributeName var:sourceAttributeName
u2p:typeName var:sourceAttributeType

Figure 30. PROV template generated from the UML representation used in ClP5 (Figure 29)

PROV elements

UML PROV / id Rationale
Class 1 prov:Entity 1 /

var:preObject

The Class 1 that models the object on which the operation is
executed is a prov:Entity identified as var:preObject. We
use the prefix pre in this identifier because it is the object before
the execution of the operation.

Operation 2

«predicate»/
«property»/
«void-accessor»

prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by
«predicate»/ «property»/ «void-accessor» is
a prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Output Parameters 4 prov:Entity 4 /
var:output

Each parameter of Output Parameters 4 is a separate
prov:Entity identified as var:output.

Attributes 5 prov:Entity 5 /
var:sourceAttribute

Each attribute of Attributes 5 is a separate prov:Entity

identified by var:sourceAttribute.

Class diagram Pattern 5 (ClP5) 45/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1 u2p:typeName /

var:className

The value var:className is the string with the name
of the class to which var:preObject 1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject
1 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the
operation Operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime

value for the end of var:operation 2 .
var:input 3 prov:value /

var:inputValue

The value var:inputValue is the direct representa-
tion of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name
of the type of var:input 3 .

var:output 4 prov:value /
var:outputValue

The value var:outputValue is the direct representa-
tion of var:output 4 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the
name of the type of var:output 4 .

var:sourceAttribute 5 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:sourceAttribute 5 is an attribute.

prov:value /
var:sourceAttributeValue

The value var:sourceAttributeValue is the di-
rect representation of var:sourceAttribute 5 .

u2p:attributeName /
var:sourceAttributeName

The value var:sourceAttributeName is the string
with the name of var:sourceAttribute 5 .

u2p:typeName /
var:sourceAttributeType

The value var:sourceAttributeType is
the string with the name of the type of
var:sourceAttribute 5 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:preObject by var:operation.
b prov:used It is the beginning of utilizing var:input by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
d prov:wasDerivedFrom It is the construction of var:output based on var:input.
e prov:wasDerivedFrom It is the construction of var:output based on var:sourceAttribute.

Discussion

• Among the Class Diagrams patterns, both ClP5 and ClP4 address the execution of an operation that returns values computed
based on information included on an object. While ClP5 identifies the concrete attributes used to compute such information,
ClP4 considers the object’s status as a whole (without taking into account the concrete attributes’ values considered for its
computation). Thus, ClP5 gives a finer grained provenance than ClP4.

• A question that might arise is why in Figure 30 var:sourceAttribute 5 is not associated with var:preObject 1

(which represents the object with the status before the execution of the operation) by means of a prov:hadMember relation,
whether var:sourceAttribute 5 is an attribute of var:preObject 1 . We have made this decision because an object
that acts as a var:preObject in an operation execution, was a var:postObject (which represents the object with the

Class diagram Pattern 5 (ClP5) 46/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember

status after the execution of the operation) in a previous operation execution. Thus, the attributes associated to such an object
in a var:preObject were registered when it previously played the role of var:postObject.

• The stereotypes «predicate», «property», and «void-accessor» denote behaviours with specific nuances.
Nevertheless, these nuances do not have impact in the translation into PROV since all of them compute Output data based on
concrete object’s attributes without modifying the object’s status. Concretely, «predicate» denotes that the operation
returns boolean values, «property» does not restrict the type of the returned values, and «void-accessor» returns
the information through a parameter. As we said previously, there is no distinction in the transformation into PROV; however,
some of the nuances given by the stereotypes will be included in the generated provenance through the values assigned
to the template’s variables. For instance, «predicate» defines the Output data as boolean, fact that is included in the
provenance through the value assigned to var:outputType in var:output 4 .

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 29 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 30 will also lack var:input 3 and its associated PROV relations.

Class diagram Pattern 5 (ClP5) 47/74

Identifier Class diagram Pattern 6 (ClP6)

Context

The execution of an operation on an object changes the object’s status as a whole (the concrete modified attributes are unknown
or irrelevant).

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes All the characteristics of the Object.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the
Object both before and after the execution of the operation (Pre-
operation object and Post-operation object, respectively).

Operation execution Operation 2

«command»/
«non-void-command»

The Operation 2 stereotyped by «command»/
«non-void-command» represents the executed operation.
These stereotypes denote that the object changes its status, without
considering the concrete modified attributes. They differ in that
an operation stereotyped by «non-void-command» returns
information, while a «command» stereotyped operation does not.
Note: the PROV template depicted in Figure 32 corresponds to
an operation stereotyped by «command» (see the discussion
block for an explanation of the transformation of the operations
stereotyped by «non-void-command»).

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

command +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 31. UML representation that models the context given by ClP6

Class diagram Pattern 6 (ClP6) 48/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

wasDerivedFrom

prov:value var:inputValue
u2p:typeName var:inputType used

used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

u2p:typeName var:className
prov:type u2p:Object

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 32. PROV template generated from the UML representation used in ClP6 (Figure 31)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status before the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:postObject.

Operation 2

«command»/
«non-void-command»

prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by
«command»/«non-void-command» is a prov:Activity

identified by var:operation.
Input Parameters 3 prov:Entity 3 /

var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4 prov:Entity 4 /
var:attribute

Each attribute of Attributes 4 is mapped to a separate
prov:Entity identified by var:attribute.

Class diagram Pattern 6 (ClP6) 49/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the name of the class to which
var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1.1 is
an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the name of the class to which
var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject 1.2 is
an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

var:attribute 4 prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:attribute 4

is an attribute.
prov:value /
var:attributeValue

The value var:attributeValue is the direct representation
of attribute 4 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of attribute 4 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the name
of the type of var:attribute 4 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we do not
consider this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input

Class diagram Pattern 6 (ClP6) 50/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom

data, the UML representation in Figure 31 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 32 will also lack var:input 3 and its associated PROV relations.

• A question that might arise is why in Figure 32 var:attribute 4 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Stereotypes «command» and «non-void-command» denote that the operation performs a change to the object’s status as
a whole. They differ in that an operation stereotyped by «non-void-command» returns information, while a «command»
stereotyped operation does not. Due to the fact that the context of this pattern does not explicitly state that output data
are obtained from the Operation execution, we represented this context in UML using the stereotype «command» (see
Figure 31).

Aiming at giving an insight into how the inclusion of Output data affects both the UML representation and the resulting
PROV template, Figure 33 depicts a UML representation with (1) the stereotype «non-void-command» and (2) Output
data modelled as Output Parameters 5 (in this case with return direction, though the translation of inout and out
directions would be equivalent). Figure 34 depicts its transformation into PROV. Both Figure 33 and 34 highlight the
elements related to the inclusion of the Output data by blurring the elements coming from Figure 31 and 32, respectively.

Class
+attributeName: Type1

2
3

1

4

5
Type4+operationName(in param1: Type2, in param2:Type3):non-void-command

Figure 33. UML representation that models the context given by ClP6, including Output Parameters.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

wasDerivedFrom

prov:value var:inputValue
u2p:typeName var:inputType used

used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

u2p:typeName var:className
prov:type u2p:Object

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:outputg wasDerivedFrom

h wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

i wasDerivedFrom

5

Figure 34. PROV template generated from the UML representation used in ClP6, including Output Parameters

(Figure 33)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

Class diagram Pattern 6 (ClP6) 51/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

PROV relations

PROV Relation Description
g prov:wasDerivedFrom It is the construction of var:output based on var:input.
h prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
i prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 6 (ClP6) 52/74

http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName

Identifier Class diagram Pattern 7 (ClP7)

Context

The execution of an operation on an object directly sets the information passed to the operation as values of concrete object’s
attributes, thus provoking a change in the object’s status.

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, the values of
some attributes change, we have identified:

Modified attributes The modified Object’s attributes.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«set»
The Operation 2 stereotyped by «set» represents the executed
operation. Concretely, the stereotype «set» denotes that Input data
are directly set as values of concrete attributes of the object.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

set +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 35. UML representation that models the context given by ClP7

Class diagram Pattern 7 (ClP7) 53/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a b

c
f

e d

u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

hadMember

u2p:typeName var:className
prov:type u2p:Object

used
used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:value var:inputValue
u2p:typeName var:inputType
prov:type u2p:Attribute
u2p:attributeName var:attributeName

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 36. PROV template generated from the UML representation used in ClP7 (Figure 35)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status before the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 , is a
prov:Entity identified as var:postObject.

Operation 2

«set»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «set» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entiy 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
None / The Modified attributes (belonging to Attributes 4) are already

mapped to var:input. For further information, see the discussion.
prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4) is mapped
to a separate prov:Entity with identifier var:attribute.

Class diagram Pattern 7 (ClP7) 54/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entiy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the name of the
class to which var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject 1.1 is
an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the name of the
class to which var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject 1.2 is
an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an xsd:dateTime value
for the start of var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime value
for the end of var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct representation of
var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name of the
type of var:input 3 .

prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:input 3 is an
attribute.

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of the attribute var:input 3 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that var:attribute 4.2

is an attribute.
prov:value /
var:attributeValue

The value var:attributeValue is the direct representation
of var:attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the name
of var:attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the name
of the type of var:attribute 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:hadMember It states that var:input is one of the elements in var:postObject. This is due

to the fact that in this context the input information is directly set as values of
certain attributes of the Object.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the

Class diagram Pattern 7 (ClP7) 55/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 36 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• This context states that the Input data are directly set as values of certain object’s attributes, which means that the Input
data correspond directly to the Modified attributes. This fact is represented in the PROV template by means of the
pair attribute/value prov:type/u2p:Attribute of var:input 3 , and the relation f prov:hadMember between
var:postObject 1.2 and var:input 3 . Additionally, var:input 3 has the attribute u2p:attributeName whose
value var:attributeName denotes the name of the modified attribute.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we do not include this output data in this pattern description to avoid overburden both the
UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both the UML representation and the resulting
PROV template, Figure 37 depicts a UML representation with the Output data modelled as Output Parameters 5 (in
this case with return direction, though the translation of inout and out directions would be equivalent). Figure 38 depicts
its transformation into PROV. Both Figure 37 and 38 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 35 and 36, respectively.

Class
+attributeName: Type1

set +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 37. UML representation that models the context given by ClP7, including Output Parameters.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a b

c
f

e
d

u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

hadMember

hadMember

u2p:typeName var:className
prov:type u2p:Object

used
used

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:value var:inputValue
u2p:typeName var:inputType
prov:type u2p:Attribute
u2p:attributeName var:attributeName

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:outputg wasDerivedFrom

h wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

i wasDerivedFrom

5

Figure 38. PROV template generated from the UML representation used in ClP7, including Output Parameters

(Figure 37)

Class diagram Pattern 7 (ClP7) 56/74

http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#hadMember
http://uml2prov.unirioja.es/ns/u2p#attributeName

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
g prov:wasDerivedFrom It is the construction of var:output based on var:input.
h prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
i prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 7 (ClP7) 57/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName

Identifier Class diagram Pattern 8 (ClP8)

Context

The execution of an operation on an object changes the values of concrete object’s attributes, thus provoking a change in the
object’s status.

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, the values
of some attributes change, we have identified:

Modified attributes The modified Object’s attributes.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«modify»
The Operation 2 stereotyped by «modify» represents the executed
operation. Concretely, the stereotype «modify» denotes that concrete
attributes of the object are modified.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

modify +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 39. UML representation that models the context given by ClP8

Class diagram Pattern 8 (ClP8) 58/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

prov:type u2p:Attribute
prov:value var:modifiedAttrValue
u2p:attributeName var:modifiedAttrName
u2p:typeName var:modifiedAttrType

hadMember

hadMember

used

used

u2p:typeName var:className
prov:type u2p:Object

var:modifiedAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:ypeName var:attributeClass

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:value var:inputValue
u2p:typeName var:inputType

Figure 40. PROV template generated from the UML representation used in ClP8 (Figure 39)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status before the
execution of the operation, which is represented by Class 1 , is
a prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 , is
a prov:Entity identified as var:postObject.

Operation 2

«modify»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «modify» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entiy 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modifiedAttribute

Each Modified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:modifiedAttribute.

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:attribute.

Class diagram Pattern 8 (ClP8) 59/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entiy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the name
of the class to which var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:preObject
1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the name
of the class to which var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that var:postObject
1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of the
operation var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime

value for the end of var:operation 2 .
var:input 3 prov:value /

var:inputValue

The value var:inputValue is the direct representa-
tion of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the name
of the type of var:input 3 .

var:modifiedAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modifiedAttribute 4.1 is an attribute.

prov:value /
var:modifiedAttrValue

The value var:attributeValue is the direct repre-
sentation of var:modifiedAttribute 4.1 .

u2p:attributeName /
var:modifiedAttrName

The value var:modifiedAttrName is the string with
the name of var:modifiedAttribute 4.1 .

u2p:typeName /
var:modifiedAttrType

The value var:attributeType is the string with the
name of the type of var:modifiedAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:attribute 4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is the direct repre-
sentation of var:attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with the
name of var:attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with the
name of the type of var:attribute 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modifiedAttribute is one of the elements in

var:postObject.
h prov:wasDerivedFrom It is the construction of var:modifiedAttribute based on var:input.
i prov:wasGeneratedBy It is the completion of production of var:modifiedAttribute by

var:operation.

Class diagram Pattern 8 (ClP8) 60/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 40 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we do not to
consider this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 39 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 40 will also lack var:input 3 and its associated PROV relations.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we do not include this output data in this pattern description to avoid overburden both the
UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML representation and the resulting PROV
template, Figure 41 depicts a UML representation with the Output data modelled as Output Parameters 5 (in this
case with return direction, though the translation of inout and out directions would be equivalent). Figure 42 depicts its
transformation into PROV. Both Figure 41 and 42 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 39 and 40, respectively.

Class
+attributeName: Type1

modify +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 41. UML representation that models the context given by ClP8, including Output Parameters.

Class diagram Pattern 8 (ClP8) 61/74

var:output
wasDerivedFromj

wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

k
wasDerivedFroml

5

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d u2p:typeName var:className
prov:type u2p:Object

wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

prov:type u2p:Attribute
prov:value var:modifiedAttrValue
u2p:attributeName var:modifiedAttrName
u2p:typeName var:modifiedAttrType

hadMember

hadMember

used

used

u2p:typeName var:className
prov:type u2p:Object

var:modifiedAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:ypeName var:attributeClass

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:value var:inputValue
u2p:typeName var:inputType

Figure 42. PROV template generated from the UML representation used in ClP8, including Output Parameters

(Figure 41)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
j prov:wasDerivedFrom It is the construction of var:output based on var:input.
k prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
l prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of
var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 5 .

Class diagram Pattern 8 (ClP8) 62/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName

Identifier Class diagram Pattern 9 (ClP9)

Context

The execution of an operation on an object removes element(s) from a concrete object’s collection attribute, thus provoking a
change in the object’s status.

Key elements

Object The object on which the operation is executed.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the operation.

Input data The information (if any) passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, a concrete
collection attribute changes, we have identified:

Modified collection attribute The modified Object’s attribute.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«remove»
The Operation 2 stereotyped by «remove» represents the exe-
cuted operation. Concretely, the stereotype «remove» denotes that an
element (or elements) of a concrete collection attribute is removed.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

remove +operationName(in param1: Type2, in param2:Type3)2
3

1

4

Figure 43. UML representation that models the context given by ClP9

Class diagram Pattern 9 (ClP9) 63/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

var:modCollAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

u2p:typeName var:className
prov:type u2p:Object

u2p:typeName var:className
prov:type u2p:Object

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

l

Figure 44. PROV template generated from the UML representation used in ClP9 (Figure 43)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status be-
fore the execution of the operation, which is represented by
Class 1 , is a prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 ,
is a prov:Entity identified as var:postObject.

Operation 2

«remove»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «remove» is
a prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modCollAttribute

The Modified collection attribute (belonging to
Attributes 4) is a prov:Entity with identifier
var:modCollAttribute.
Additionally, each element in this collection is a separate
prov:Entity identified by var:collElement 4.1.1

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:attribute.

Class diagram Pattern 9 (ClP9) 64/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the
name of the class to which var:preObject 1.1

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:preObject 1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the
name of the class to which var:postObject 1.2

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:postObject 1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of
the operation var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct represen-
tation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the
name of the type of var:input 3 .

var:modCollAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modCollAttribute 4.1 is an attribute.

prov:value /
var:modCollAttributeValue

The value var:modCollAttributeValue is the
direct representation of var:modCollAttribute
4.1 .

u2p:attributeName /
var:modCollAttributeName

The value var:modCollAttributeName is the
string with the name of var:modCollAttribute
4.1 .

u2p:typeName /
var:modCollAttributeType

The value var:modCollAttributeType is
the string with the name of the type of
var:modCollAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:attribute 4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is the direct rep-
resentation of var:attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with
the name of var:attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with
the name of the type of var:attribute 4.2 .

Class diagram Pattern 9 (ClP9) 65/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modCollAttribute is one of the elements in

var:postObject.
h prov:wasDerivedFrom It is the construction of var:modCollAttribute based on var:input.
i prov:wasGeneratedBy It is the completion of production of var:modCollAttribute by

var:operation.
j prov:hadMember It states that var:collElement is one of the elements in

var:modCollAttribute.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 44 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that Input data should be passed to the operation, we have
considered this circumstance with the aim of covering a wider spectrum of cases. When the executed operation lacks Input
data, the UML representation in Figure 43 will not include Input Parameters 3 . As a consequence, the resulting PROV
template in Figure 44 will also lack var:input 3 and its associated PROV relations.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we have decided not to include this output data in this pattern description to avoid overburden
both the UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML representation and the resulting PROV
template, Figure 45 depicts a UML representation with the Output data modelled as Output Parameters 5 (in this
case with return direction, though the translation of inout and out directions would be equivalent). Figure 46 depicts its
transformation into PROV. Both Figure 45 and 46 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 43 and 44, respectively.

Class diagram Pattern 9 (ClP9) 66/74

http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember

Class
+attributeName: Type1

remove +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 45. UML representation that models the context given by ClP9, including Output Parameters.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

var:modCollAttribute

4.1

wasDerivedFrom

g

h wasDerivedFrom

u2p:typeName var:className
prov:type u2p:Object

u2p:typeName var:className
prov:type u2p:Object

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

var:output
k wasDerivedFrom

l wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

m wasDerivedFrom

5

Figure 46. PROV template generated from the UML representation used in ClP9, including Output Parameters

(Figure 45)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
k prov:wasDerivedFrom It is the construction of var:output based on var:input.
l prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
m prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 9 (ClP9) 67/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName

Identifier Class diagram Pattern 10 (ClP10)

Context

The execution of an operation on an object directly adds the information passed to the operation as new element(s) of a concrete
object’s collection attribute, thus provoking a change in the object’s status.

Key elements

Object The object to which the operation to be executed belongs.

Pre-operation object The object with the status before the execution of the operation.
Post-operation object The object with the status after the execution of the operation.

Operation execution The execution of the behaviour specified by the operation.

Input data The information passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the Operation execution, a concrete
collection attribute changes, we have identified:

Modified collection attribute The modified Object’s attribute.
Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key Element UML Rationale
Object Class 1 Objects are classified attending to their characteristics and behaviour

by means of classes. Thus, we use Class 1 to represent the Object
both before and after the execution of the operation (Pre-operation
object and Post-operation object, respectively).

Operation execution Operation 2

«add»
The Operation 2 stereotyped by «add» represents the executed op-
eration. Concretely, the stereotype «add» denotes that a new element
(or elements) is directly added to a concrete collection attribute.

Input data Input Parameters 3 They specify the information passed into the Operation execution.
Object’s attributes Attributes 4 They represent the characteristics of the Object.

Class
+attributeName: Type1

add +operationName(in param1: Type2, in param2:Type3) 2
3

1

4

Figure 47. UML representation that models the context given by ClP10

Class diagram Pattern 10 (ClP10) 68/74

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:typeName
prov:type u2p:Object

u2p:typeName var:typeName
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Figure 48. PROV template generated from the UML representation used in ClP10 (Figure 47)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the status be-
fore the execution of the operation, which is represented by
Class 1 , is a prov:Entity identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the status after the
execution of the operation, which is represented by Class 1 ,
is a prov:Entity identified as var:postObject.

Operation 2

«add»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped by «add» is a
prov:Activity identified by var:operation.

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a separate
prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modCollAttribute

The Modified collection attribute (belonging to
Attributes 4) is a prov:Entity with identifier
var:modCollAttribute.
Additionally, each element in this collection is a separate
prov:Entity identified by var:collElement 4.1.1

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to Attributes 4)
is mapped to a separate prov:Entity with identifier
var:attribute.

Class diagram Pattern 10 (ClP10) 69/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

Attributes

PROV Element Attribute / Value Description
var:preObject 1.1 u2p:typeName /

var:className

The value var:className is the string with the
name of the class to which var:preObject 1.1

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:preObject 1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:className

The value var:className is the string with the
name of the class to which var:postObject 1.2

belongs.
prov:type /
u2p:Object

The value u2p:Object shows that
var:postObject 1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName is the name of
the operation var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct represen-
tation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the
name of the type of var:input 3 .

var:modCollAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modCollAttribute 4.1 is an attribute.

prov:value /
var:modCollAttributeValue

The value var:modCollAttributeValue

is the direct representation of
var:modCollAttribute 4.1 .

u2p:attributeName /
var:modCollAttributeName

The value var:modCollAttributeName is the
string with the name of var:modCollAttribute
4.1 .

u2p:typeName /
var:modCollAttributeType

The value var:modCollAttributeType is
the string with the name of the type of
var:modCollAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that attribute
4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is the direct rep-
resentation of attribute 4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the string with
the name of attribute 4.2 .

u2p:typeName /
var:attributeType

The value var:attributeType is the string with
the name of the type of attribute 4.2 .

Class diagram Pattern 10 (ClP10) 70/74

http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Object
http://uml2prov.unirioja.es/ns/u2p#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://uml2prov.unirioja.es/ns/u2p#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#attributeName
http://uml2prov.unirioja.es/ns/u2p#typeName

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modCollAttribute is one of the elements in

var:postObject.
h prov:hadMember It states that var:input is one of the elements in var:modCollAttribute.

This is due to the fact that in this context the input information is directly added to
the object’s collection attribute.

i prov:wasGeneratedBy It is the completion of production of var:modCollAttribute by
var:operation.

j prov:hadMember It states that var:collElement is one of the elements in
var:modCollAttribute.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution of operations that change an object’s
status. While, ClP6 changes the object’s status as a whole (being the concrete modified attributes unknown or irrelevant),
in patterns ClP7-ClP10 the concrete attributes modified by the Operation execution are explicitly known. In contrast to
ClP7 which directly sets the information passed into the Operation execution as values of concrete object’s attributes, the
other mentioned patterns use such information to change the object’s status as a whole or the values of concrete object’s
attributes. It must also be noted that patterns ClP9 and ClP10 address the execution of operations which remove or add
elements from/into an object’s collection attribute, while patterns ClP7 and ClP8 affect either a univalued attribute or a
collection attribute as a whole.

• A question that might arise is why in Figure 48 var:attribute 4.2 is associated with var:postObject 1.2 (which
represents the object with the status after the execution of the operation), but it is not associated with var:preObject 1.1

(the object with the status before the execution). We have made this decision because an object that acts as a var:preObject
in an operation execution, was a var:postObject in a previous operation execution. Thus, the attributes associated to such
an object in a var:preObject were registered when it previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that output data should be obtained from the Operation execution,
this could be the case. However, we do not include this output data in this pattern description to avoid overburden both the
UML and PROV explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML representation and the resulting PROV
template, Figure 49 depicts a UML representation with the Output data modelled as Output Parameters 5 (in this
case with return direction, though the translation of inout and out directions would be equivalent). Figure 50 depicts its
transformation into PROV. Both Figure 49 and 50 highlight the elements related to the inclusion of the Output data by
blurring the elements coming from Figure 47 and 48, respectively.

Class
+attributeName: Type1

add +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Figure 49. UML representation that models the context given by ClP10, including Output Parameters.

Class diagram Pattern 10 (ClP10) 71/74

http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:typeName
prov:type u2p:Object

u2p:typeName var:typeName
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:output
k wasDerivedFrom

l wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

m wasDerivedFrom

5

Figure 50. PROV template generated from the UML representation used in ClP10, including Output Parameters

(Figure 49)

PROV elements

UML PROV / id Rationale
Output Parameters 5 prov:Entity 5 /

var:output

Each parameter of Output Parameters 5 is a separate
prov:Entity identified as var:output.

PROV relations

PROV Relation Description
k prov:wasDerivedFrom It is the construction of var:output based on var:input.
l prov:wasGeneratedBy It is the completion of production of var:output by var:operation.
m prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Attributes

PROV Element Attribute / Value Description
var:output 5 prov:value /

var:outputValue

The value var:outputValue is the direct representation of var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the type of
var:output 5 .

Class diagram Pattern 10 (ClP10) 72/74

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p#typeName

References
[1] OMG, “Unified Modeling Language (UML). Version 2.5,” 2015. Document formal/15-03-01, March, 2015.

[2] L. Moreau and P. Missier (eds.), “PROV-DM: The PROV Data Model,” W3C Recommendation REC-prov-dm-20130430,
World Wide Web Consortium, 2013.

[3] N. Kwasnikowska, L. Moreau, and J. V. D. Bussche, “A formal account of the open provenance model,” ACM Trans. Web,
vol. 9, pp. 10:1–10:44, May 2015.

[4] PROV Graph Conventions. Available at www.w3.org/2011/prov/wiki/Diagrams. Last accessed April, 2019.

[5] M. Dürst and M. Suignard., “Internationalized Resource Identifiers (IRIs) (RFC 3987).” January, 2005.

[6] A. Knapp and S. Merz, “Model checking and code generation for uml state machines and collaborations,” Proc. 5th Wsh.
Tools for System Design and Verification, pp. 59–64, 2002.

[7] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification of class stereotypes,” in Proceedings of the 26th
IEEE International Conference on Software Maintenance, pp. 1–10, 2010.

73/74

www.w3.org/2011/prov/wiki/Diagrams

Appendix A Taxonomy of Class’ operations
Depending on their nature, operations implicitly have specific semantics that can also provide information of interest for
provenance capture. In order to provide UML Class diagrams with such additional semantics to be included in the generated
PROV templates, we have stated a taxonomy of operations given by a set of stereotypes to be included in such diagrams. The
taxonomy is based on that given by Dragan et al. [7], which has been enriched with additional stereotypes aimed at identifying
extra/further operation’s semantics not considered in [7] (marked with an asterisk in Table 2).

Table 2. Extension of the taxonomy given in [7] showing the categories of UML Class’s operations considered in our proposal.
Stereotypes with an asterisk denote those included by our proposal.

Category Stereotype
name Description

Creational create The operation creates an object.
destroy The operation destroys an object.

Structural
Accessor

get The operation returns values of concrete attributes of an object.
search* The operation returns elements belonging to a concrete collection attribute of an object.
process* The operation returns values that are computed based the object’s status as a whole

(the specific attributes used for the calculation are not relevant).
predicate The operation returns boolean values that are computed based on concrete attributes

of an object.
property The operation returns values (of any type) that are computed based on concrete

attributes of an object.
void-accessor The operation returns values (of any type) that are computed based on concrete

attributes of an object. These values are returned by means of parameters.

Structural
Mutator

command The operation changes the status of an object as a whole (the modified attributes are
unknown or irrelevant). It does not return information.

non-void-command The operation changes the status of an object as a whole (the modified attributes are
unknown or irrelevant). It does return information.

set The operation directly sets the information passed to the operation as values of concrete
attributes of an object.

modify* The operation modifies concrete attributes of an object.
remove* The operation removes an element from a concrete collection attribute of an object.
add* The operation adds an element on a concrete collection attribute of an object.

74/74

	Introduction
	Before reading
	Notational conventions
	Structure of the patterns
	Identifier
	Context
	UML Diagram
	Mapping to PROV
	Discussion

	Index of patterns
	UML Sequence Diagrams
	UML State Machine Diagrams
	UML Class Diagrams
	Taxonomy of Class' operations

